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Abstract

We investigate the challenge of generating a task-specific
visual classifier without visual training samples, only us-
ing textual descriptions of the output classes. Unlike ap-
proaches that learn a fixed representation of the output
classes, we generate at inference time a model tailored to
a query classification task - a learning setup which we call
text2model. To generate task-based zero-shot classifiers, we
train a hypernetwork that receives class descriptions and
outputs a multi-class model. The hypernetwork architec-
ture is designed to be equivariant with respect to the set of
descriptions and the classification layer, thus obeying the
symmetries of the problem and improving generalization.
Our approach generates non-linear classifiers and can han-
dle rich textual descriptions, e.g., descriptions that include
negation. We name this approach T2M-HN and evaluate it
in a wide series of zero-shot recognition tasks, for image,
point-cloud, and action recognition, using a range of text
descriptions: From single words to rich descriptions. Our
results demonstrate strong improvements over previous ap-
proaches, showing that zero-shot learning can be applied
with little multi-model training data.

1. Introduction

People can classify perceived objects by following lan-
guage instructions, like “separate soft toys from hard ones”
or ”collect the furry toy animals” [34]. Developing models
that have this capacity has many applications in open-world
domains where the label space is not fully known during
training or when labels are expensive or hard to obtain. In-
deed, numerous attempts have been made to achieve zero-
shot classification capacity (see related methods). Unfor-

Figure 1: The text-to-model problem. (a) Classification
tasks are described in rich language. (b) Traditional zero-
shot methods produce static representations, shared for all
tasks. (c) Text-to-model uses a hypernetwork to generate
task-specific representations and classifiers. This allows
T2M to extract task-specific discriminative features.

tunately, as we now explain, existing studies are limited in
two major ways: (1) Query-dependence; and (2) Richness
of Language description.

First, Query-dependence. To illustrate the issue, con-
sider a popular family of zero-shot learning (ZSL) ap-
proaches, which maps text (like class labels) and images
to a shared space [19, 72, 1, 70, 58, 67, 40, 66, 47]. To clas-
sify a new image from an unseen class, one finds the clos-
est class label in the shared space. The problem with this
family of shared-space approaches is that the learned rep-
resentation (and the kNN classifier that it induces) remain
”frozen” after training, and are not tuned to the classifica-
tion task given at inference time. For instance, furry toys
would be mapped to the same shared representation regard-
less of whether they are to be distinguished from other toys,
or from other furry things (see Figure 1). The same limita-



tion also hinders another family of ZSL approaches, which
synthesize samples from unseen classes at inference time
using conditional generative models, and use these samples
with kNN classification [14, 24]. Some approaches address
the query-dependence limitation by assuming that test de-
scriptions are known during training [21, 54], or by (costly)
training a classifier or generator at inference time [65, 54].
Instead, here we learn a model that produces task-dependent
classifiers and representations without test-time training.

The second limitation is language richness. Natural lan-
guage can be used to describe classes in complex ways.
Most notably, people use negative terms, like ”dogs without
fur”, to distinguish class members from other items. Pre-
vious work could only handle limited richness of language
descriptions. For instance, it cannot represent adequately
textual descriptions with negative terms [19, 72, 1, 70, 58,
67, 40, 66, 14, 24]. In this paper, we wish to handle the
inherent linguistic richness of natural language.

Here, we describe a novel deep network architecture
and a learning workflow that addresses these two aspects:
(1) generating a discriminative model tuned to requested
classes at query time and (2) supporting rich language and
negative terms.

To achieve these properties, we propose an approach
based on hypernetworks (HNs) [20]. An HN is a deep net-
work that emits the weights of another deep network (see
Figure 2 for an illustration). Here, the HN receives a set of
class descriptions and emits a multi-class model that can
classify images according to these classes. Interestingly,
this text-based ZSL setup has an important symmetric struc-
ture. Specifically, if the order of input descriptions is per-
muted, one expects that the same classifiers are emitted, but
following the same permutation. This property is called
equivariance, and it can be leveraged to design better archi-
tectures [16, 13, 25, 28, 17]. Taking invariance and equiv-
ariance into account has been shown to provide significant
benefits for learning in spaces with symmetries like sets [69]
[35] graphs [23, 63] and deep weight spaces [39]. In gen-
eral however, HNs are not always permutation equivariant.
We design invariant and equivariant layers and describe an
HN architecture that respects the symmetries of the prob-
lem, and term it T2M-HN: a text-to-model hypernetwork.

We put versatility of T2M-HN to the test across an ar-
ray of zero-shot classification tasks, spanning diverse data
types including images, 3D point clouds, and 3D skeletal
data for action recognition (see Table 1). Our framework
exhibits a remarkable ability to incorporate various forms of
class descriptions including long and short texts, as well as
class names. Notably, T2M-HN surpasses the performance
of previous state-of-the-art methods in all of these setups.

Our paper offers four key contributions: (1) identify-
ing limitations in prior shared space methods for ZSL that
rely on fixed representations and distance-based classifiers

for text and image data, and proposing task-dependent rep-
resentations as an alternative; (2) introducing the Text-
to-Model (T2M) approach for generating deep classifica-
tion models from textual descriptions; (3) investigating the
equivariance and invariance properties of T2M models and
proposing T2M-HN, an architecture based on HNs that ad-
heres to the setup’s symmetries; and (4) demonstrating the
efficacy of T2M-HN on a range of zero-shot tasks, includ-
ing image and point-cloud classification and action recogni-
tion, using diverse text descriptions. T2M-HN outperforms
existing state-of-the-art approaches in all tasks.

2. Related work
Zero-shot learning (ZSL). The core challenge in ZSL

lies in recognizing unseen classes based on their semantic
associations with seen classes. This association is learned
using human-annotated attributes [30, 57, 38, 3]. Another
source of information for learning semantic associations is
to use textual descriptions. Three main sources were used
in the literature to obtain text descriptions of classes: (1)
Using class names as descriptions [70, 18, 10, 11]; (2) using
encyclopedia articles that describe the class [29, 15, 46, 9,
42, 73]; and (3) providing per-image descriptions manually
annotated by domain experts [49, 41, 61]. These can then
be aggregated into class-level descriptions.

Shared space zero-shot learning. One popular ap-
proach to ZSL is to learn a joint visual-semantic represen-
tation, using either attributes or natural text descriptions.
Some studies project visual features onto the textual space
[18, 27, 67], others learn a mapping from a textual to a vi-
sual space [70, 40], and some project both images and texts
into a new shared space [1, 4, 58, 72, 5, 6, 53, 66, 47]. Once
both image and text can be encoded in the same space, clas-
sifying an image from a new class can be achieved without
further training by first encoding the image and then select-
ing the nearest class in the shared space. In comparison,
instead of nearest-neighbour based classification, our ap-
proach is learned in a discriminative way, which may result
in richer and potentially stronger models.

Generation-based zero-shot learning. Another line of
ZSL studies uses generative models like GANs to generate
representations of samples from unseen classes, Such gen-
erative approaches have been applied in two settings. Some
studies assume they have access to test-class descriptions
(attributes or text) during model training. Hence, they can
train a classifier over test-class images, generated by lever-
aging the test-class descriptions [32, 54, 21]. Other studies
assume access to test-class descriptions only at test time.
Hence, they map the test-class descriptions to the shared
space of training classes and apply a nearest-neighbor in-
ference mechanism. In this work, we assume that any infor-
mation about test classes is only available at test time. As
a result, ZSL approaches that assume training-time access



Dataset Sample Description Example
name and type data type description

ModelNet-40 [64]
3D Point Clouds

CAD models

Class
name

(1) Airplane
(2) Chair

AwA [26]
Animal
images

Class name
(1) Moose
(2) Elephant

Long

(1) “An animal of the deer family with humped
shoulders, long legs, and a large head with antlers.”,

(2) “A plant-eating mammal with a long trunk,
large ears, and thick, grey skin.”

Negative
(1) “An animal without stripes and not gray”,
(2) “An animal without fur and without horns”

Attribute
(1) “Animals with fur”
(2) “Animals with long trunk”

SUN [41]
Images of scenes

and places
Short

(1) “Desert vegetation”,
(2) “Lecture room”

CUB [61]
Images of

bird species
Long

(1) “This bird is red with an orange beak and black
eyes and eyebrow.”,

(2) “a small yellow bird with a black
chest and tail.”

BABEL 120 [44]
Sequences of

3D skeletal data
Short

(1) “Take off bag”,
(2) “Type on a keyboard”

Table 1: Overview of evaluation datasets and tasks.

Figure 2: The text-to-model learning problem and our architecture. Our model (yellow box) receives a set of class descriptions
as input and outputs weights w for a downstream on-demand model (orange). The model has two main blocks: A pretrained
text encoder and a hypernetwork that obeys certain invariance and equivariance symmetries. The hypernetwork receives a set
of dense descriptors to produce weights for the on-demand model.

to information about the test classes are beyond our scope.1

1While these algorithms could in principle be re-trained when new
classes are presented at test-time (e.g. in a continual learning [51] setup),
this would result in costly and inefficient inference mechanism, and possi-
bly also in catastrophic forgetting [36] of previous class information. We
hence do not include them in our experiments.

However, works that assume only test-time access to test-
class information form some of our baselines [14, 24].

Hypernetworks [20] (HNs) were applied to many com-
puter vision problems, including few-shot learning [68],
federated learning [2], continual learning [60], weight prun-
ing [33] . Here we use HNs for text-based ZSL. The work



by [29] also predicts model weights from textual descrip-
tions, butdiffers in two key ways. (1) They learn a constant
representation of each class; our method uses the context
of all the classes in a task to predict data representation. (2)
They predict weights of a linear architectures; our T2M-HN
applies to deeper ones.

ZSL with large vision-language models Large-scale
vision-language models, and notably CLIP [47] show re-
markable zero-shot capabilities for vision-and-language
tasks. A key difference between the CLIP approach and
this paper is that CLIP was trained on massive multimodal
data. In contrast, our approach leverages the semantic com-
positionality of language models, without requiring paired
image-text data. As a result, we successfully applied T2M-
HN directly to domains where no massive multimodal data
exist, like 3D point cloud or skeleton sequence for action
recognition. The downside is that the T2M-HN representa-
tion may be sensitive to language and semantic distinctions
irrelevant to the visual modality.

3. Problem formulation

We describe the problem of text-to-model in the context
of multiclass classification. It can be naturally extended to
regression and ranking problems. Here, our objective is to
learn a mapping τ from a set of k natural language descrip-
tions into the space of k-class classifiers. Here, we address
the case where the architecture of the downstream classifier
is fixed and given in advance, but this assumption can be
relaxed as in [31].

Formally, let Sk = {s1, . . . , sk} be a set of k class de-
scriptions drawn from a distribution Pk, where sj is a text
description of the jth class. The distribution Pk can be char-
acterized by a two-stage process: First, a set of k classes is
drawn from a large set of classes. Then, a text description
is drawn for each class.

Let τ be a T2M model parameterized by a set of pa-
rameters ϕ. It takes the text descriptors and produces a set
of parameters W of a k-class classification model f(·;W ).
Therefore, we have τϕ : {s1, . . . sk} → Rd, where d is the
dimension of W , that is, the number of parameters of the
classification model f(·;W ), and we denote W = τϕ(S

k).
Let l : Y × Y → R+ be a loss function, and let

{xi, yi}ni=1 be a labeled dataset from a distribution P over
X × Y . For k-class classification, Y = {1, . . . , k}. We can
explicitly write the loss in terms of ϕ as follows. l (yi, ŷi) =
l (yi, f(xi;W )) = l

(
yi, f(xi; τϕ(S

k))
)
. See also Figure 2

and note that τ = h ◦ g. The goal of T2M is to minimize

ϕ∗ = argmin
ϕ

ESk∼PkE(x,y)∼P
[
l
(
y, f(x; τϕ(S

k))
)]

.

(1)
The training objective becomes ϕ∗ =

argminϕ
∑

j

∑
i l
(
yi, f(xi; τϕ(S

kj ))
)
,where the sum

over j means summing over all descriptions from all sets in
the training set.

4. Our approach
We first describe our approach, based on hypernetworks.

We then discuss the symmetries of the problem, and an ar-
chitecture that can leverage these symmetries.

We propose to address the text-to-model problem, using
a hypernetwork architecture. A hypernetwork is a model
that outputs the weights of another model [20]. In our case,
it receives a set of textual descriptions of classes to be rec-
ognized, and outputs the weights of a classifier that can dis-
criminate them. Figure 2 illustrates our architecture. It has
two components. First, a text encoder g takes natural lan-
guage descriptions and transforms them into dense descrip-
tors; and second, a hypernetwork h takes these dense de-
scriptors and emits weights for a downstream classifier. In
this paper, we do not impose any special properties on the
text encoder g. It can be any model trained using language
data (no need for multi-modal data).

4.1. Symmetries of the T2M problem

Interestingly, the T2M setup imposes certain invari-
ance and equivariance properties.Design an architecture
that takes them into account can improve generalization.
We now discuss these properties and then derive an archi-
tecture that captures them.

Equivariance properties of the classifier layer. As an il-
lustrative example, consider a downstream multi-class clas-
sifier f1, that is designed to distinguish cats from dogs, and
another classifier f2, designed to distinguish dogs from cats.
Intuitively, at the optimum, the two classifiers should be
identical except for a switch of two weight vectors at the
last layer (w1 in f1 equal to w2 in f2). This has an important
implication for the hypernetwork. Any permutation applied
to its input class descriptions should be reflected in a par-
allel ordering of the weight vectors that it produces. Suppl.
section B.1 provides a formal definition of this property.

Invariance properties of intermediate layers. Consider-
ing now the layers of the downstream classifier before the
last (classifier) layer. In supplemental section B.1, we prove
that using an equivariant transformation for the last layer
and an invariant transformation for earlier layers is suffi-
cient to ensure that the downstream classifier is equivariant
to permutation over the descriptions.

Invariant and equivariant Architectures. Given the
equivariance property discussed above, we wish to design
a deep architecture that adheres to those symmetries, be-
cause that improves generalization. To ensure that certain



elements remain invariant permutation, they should be pro-
cessed with a shared set of parameters [62, 48]. In our case,
we need to share the parameters that process input descrip-
tions, so the model is equivariant to permutations of those
inputs.

Figure 3 gives the high-level structure of the equivari-
ant architecture of T2M-HN. Schematics of equivariant lay-
ers and invariant layers are detailed in supplemental section
B.1. Our experiments below show that using an equivariant
architecture consistently improve generalization (Figure 7).

5. Experiments
The T2M setup is about producing a model that can

be applied to data from new classes. Accordingly, the
model trains on data from a set of training classes, along-
side their text descriptions. Then, it is tested on data from
new classes, given the text descriptions of these classes.

We evaluate T2M-HN in zero-shot classification, using
three image datasets, one 3D point cloud dataset, and one
action recognition dataset (see blow). We consider vari-
ous forms of text description, including single-word class
labels, few-word class names, and longer descriptions that
could also include negative properties (i.e. properties that
the images in the class do not have). Finally, we study one-
class classification based on text attributes. Table 1 summa-
rizes our tasks, datasets and descriptions.

Baselines: We compare our T2M-HN with four text-
based zero-shot approaches for image recognition: (1) DE-
VISE [18] projects images to a pre-trained language model
space by adding a projection head to a pre-trained visual

Figure 3: (a) The T2M-HN architecture for equivariant-
invariant hypernetwork. The input is processed by equiv-
ariant layers, followed by a prediction head for each layer
of the target on-demand classifier f . The prediction head
for Wlast is equivariant. Heads for earlier layers of f ,
w1, ...wk are invariant. Also see schematics of the invari-
ant and equivariant layers in supplemental Figure 8.

classification model; (2) Deep Embedding Model (DEM)
[71] uses the visual space as the shared embedding space;
(3) CIZSL [14] trains conditional GANs with a loss de-
signed to generate samples from unseen classes without
synthesizing unrealistic images. At inference time, the
GAN is conditioned on test descriptions, generates syn-
thetic image representations and test images are classified
using kNN w.r.t. to the synthetic images.; and (4) GRaWD
[24] trains a conditional GAN with a loss that helps to reach
regions in space that are hard to classify as seen classes.

When relevant, we also computed the performance ob-
tained when using the CLIP encoder followed by k-NN
classification in the CLIP space [47]. Since CLIP was
trained on 400 million (image, caption) pairs, it is reason-
able to assume it has seen all classes studied here. It is hence
not a zero-shot classifier and the results can be viewed as a
“skyline” value that zero-shot approaches should aim at.

Datasets: We experiment with three image datasets:
(1) Animals with attributes (AWA) [26]; (2) SUN [41];
and (3) CUB [61]; a 3D point-clouds dataset: (4) Model-
Net40 [64]; and an action recognition dataset: (5) BABEL
120[44], containing sequences of body skeletons.

Implementation and architecture: We encode single-
word class names from the AwA dataset using Glove [43]
and longer descriptions, as well as class names, from
ModelNet-40 using SBERT [50]. For images, the visual
target model had a backbone based on a frozen ResNet-18
[22], pretrained on ImageNet with one or two fully con-
nected layers, predicted by the HN. For 3D point-cloud
data, the backbone was PointNet [45], again with one or
two predicted fully-connected layers. For action recogni-
tion data, we follow [44] and use 2 stream-AGCN [56], with
one or two predicted fully-connected layers as well.

Experimental protocol: We split the data in two dimen-
sions: Classes and samples. For standardized comparisons
the splitting classes into seen classes used for training and
unseen classes used in evaluation, follows the split used by
[65] for AWA, the split of [11] for Modelnet40 and the stan-
dard split of [61] for CUB. Since there is no official split for
SUN and BABEL, we share our random split in the Supple-
mental material. As in other ZSL protocols, for each seen
class we split out a set of evaluation images that are not pre-
sented during training, and used to evaluate the model on
the seen classes. For AwA, CUB, SUN and BABEL 120
we randomly selected 10% of images for “seen” evaluation.
For ModelNet40 we use the test split in [64]. We stress that
”Seen” in our tables means novel images from seen classes.

Workflow: When training the whole architecture, we
split the train seen classes. 80% of the classes were used
for training the backbone. Then, we froze the weights of
the backbone and use the remaining 20% to train the HN.
This way, the HN learns to generalize to new classes. Fi-
nally, we evaluate the entire architecture on the evaluation



split of the seen classes, and on the unseen classes.
At test time, the model receives k class descriptions and

predicts a standalone model to classify images drawn from
the corresponding k classes. Unless otherwise specified, we
experiment with the value of k = 2.

5.1. Zero-shot Classification using class names:
Images and 3D point clouds

In the following experiment, we evaluate T2M-HN under
two tasks: Zero-shot image classification and zero-shot 3D
point cloud classification. We use single-word class names
for both tasks as the textual class descriptions.

Results: Table 2 shows the average classification accu-
racy of all participating models. Our model reaches the
highest accuracy in both experimental setups and datasets,
indicating its effectiveness. We shed further light on the per-
formance of our model on ModelNet-40 in Supplementary
Section D.

5.2. Zero-shot classification using text descriptions:
Images and sequences of 3D skeletons

Next, we evaluate T2M-HN when using richer text de-
scriptions: (1) For SUN, we use short class descriptions
provided by the original dataset. Specifically, SUN includes
many multi-word class names like “parking garage indoor”
or “control tower outdoor”. (2) For BABEL 120 we use the
action names provided by the original dataset. Many of the
actions have multi-word, descriptive names such as “take
of bag”. (3) For AwA, we use synthetic class descriptions
generated by a GPT model. Specifically, we used GPT3
[8] to generate five different descriptions for each class of
AwA. During training and evaluation, we randomly choose
one description for each class in the batch, from its corre-
sponding 5 class descriptions. See detailed examples in the
Supplementary Section E. We will publish the full set of
descriptions for reproducibility. (4) For CUB, we use the
descriptions of each image in a given class as a possible
description of the class.

In the CUB dataset, bird species from the same taxo-
nomic family are harder to distinguish from each other than
random pairs of species [59]. To investigate this further,
we used the Datazone dataset of bird species [7] and anno-
tated each species with its corresponding taxonomic family.
Based on this information, we defined pairs of bird species
from two different families as easy and pairs from the same
family as hard.

Results: Table 3 presents the classification accuracy ob-
tained using class descriptions, for the AWA, SUN, and
BABLE datasets. T2M-HN outperforms all baselines.

Figure 4 shows the results for the CUB dataset with easy
and hard tasks. To better understand the results, consider
an important distinction between our approach and previ-
ous shared-representation approaches. These approaches

vsvs

American 
Crow

Fish 
Crow

Purple 
Finch

Olive Sided 
Flycatcher

Hard TasksEasy Tasks

Figure 4: Classifying easy and hard pairs of bird species
from the CUB dataset. Easy tasks are binary classifica-
tion tasks, where pairs of birds are from different taxonomy
families. In hard classification tasks, bird classes in each
pair are from the same taxonomy family. Values are the
mean classification accuracy on images from seen (x-axis)
and unseen (y-axis) classes, averaged over all class pairs.

aim to learn class representations that would generalize to
new classification tasks. In contrast, our approach aims to
build task-specific representations and classifiers. For easy
tasks, task-dependent representation may not be important
because the input contains a sufficient signal for accurate
classification. In contrast, in hard tasks, a model would
benefit from task-dependent representation to focus on the
few existing discriminative features of the input examples.
Indeed, as demonstrated in Figure 4, in the easy tasks, al-
though our model is superior on the seen classes, it is out-
performed by the GAN-based baselines on unseen classes.
In contrast, for the hard tasks, where task-specific class rep-
resentation is more valuable, our model is superior on both
seen and unseen classes.

5.3. Descriptions with negative terms

To this point, we have assumed that the descriptions cor-
respond to properties of the class. However, descriptions
could also state which properties the class does not have.
For example, one may want to classify animals that “do not
live in the water”, or animals that “do not fly”. To create
such negative descriptions for the AwA data, we used the
list of attributes provided for each class in AwA. For each
class, we randomly sampled 4 attributes that do not apply to
that class. For example, an elephant may be described as an
“Animal that does/is not: fly, small, furry or white”.

Results: Table 4 presents our results. We tested two sce-
narios: Considering only negative descriptions (left side of
the table) and including equal portions of positive and nega-



AWA by class name ModelNet40 by class name
Seen Unseen Harmonic Seen Unseen Harmonic

DeViSE [18] 78.1± 1.0 58.9± 1.4 67.2± 1.9 83.6± 2.7 58.6± 3.4 68.9± 3
DEM [71] 83.1± 1.6 75.1± 1.2 78.9± 2.0 86.7± 2.4 57.3± 3.3 69.0± 2.8
CIZSL [14] 97.0± 0.1 74.7± 3.2 84.20± 2.0 97.6± 0.6 50.1± 3.6 66.3± 3.3
GRaWD [24] 96.9± 0.1 81.6± 1.9 88.6± 1.1 97.8± 0.5 52.8± 3.3 68.3± 2.8
T2M-HN (ours) 98.9± 0.1 87.3± 0.2 92.7± 0.1 98.4± 0.1 59.2± 0.3 73.9± 0.1

CLIP [47] 98.9± 0.2 NA NA NA NA NA

Table 2: Classification
by single-word class
names. Mean classifi-
cation accuracy on seen
and unseen classes for
AWA and ModelNet-40.
Values are averages and
SEM over all class pairs.

SUN by short description BABEL by short descriptions AWA by GPT descriptions
Seen Unseen Harmonic Seen Unseen Harmonic Seen Unseen Harmonic

CLIP 99.1± 0.4 NA NA NA NA NA 93.7± 0.2 NA NA

DeViSE 52.0± 1.4 58.9± 1.1 55.2± 0.9 65.9± 4.4 51.1± 2.0 57.6± 2.8 91.8± 1.6 70.0± 3.7 79.4± 2.2
DEM 83.2± 1.1 83.2± 1.4 83.2± 0.9 56.6± 2.4 50.2± 1.1 53.2± 1.5 93.9± 1.2 73.0± 3.3 82.1± 1.8
CIZSL 94.0± 0.1 80.3± 0.6 86.6± 0.3 82.7± 2.1 62.5± 1.3 71.2± 1.2 96.6± 0.1 80.7± 2.2 87.9± 1.3
GRaWD 95.5± 0.1 84.7± 0.5 89.8± 0.3 83.7± 1.8 62.2± 1.1 71.3± 1.0 96.8± 0.1 81.1± 0.2 88.3± 1.2
T2M-HN (ours) 95.8± 0.1 88.4± 0.1 92.0± 0.1 95.3± 0.1 77.6± 0.1 85.5± 0.1 98.7± 0.1 83.3± 0.1 90.3± 0.1

Table 3: Classification using short and rich class descriptions. Values are the mean (± s.e.m) classification accuracy
averaged over 100 random class pairs (for SUN and BABEL 120) and all class pairs (for AwA).

Negative descriptions Negative and positive descriptions
AWA data Seen Unseen Harmonic Seen Unseen Harmonic

CLIP 19.9±2.2 NA NA 56.8±2.9 NA NA

DeViSE [18] 57.3±4.9 54.5±5.2 55.9±5.0 79.5±3.6 61.5±4.5 69.4±4.0
DEM [71] 81.7±1.2 73.7±1.6 77.5±1.0 78.2±1.7 69.1±1.6 73.4±1.2
CIZSL [14] 58.3±0.8 56.6±3.4 57.5±1.8 93.9±0.2 71.6±2.3 81.2±1.5
GRaWD [24] 54.9±0.8 56.0±3.2 55.3±1.6 95.0±0.2 73.9±2.0 83.2±1.5
T2M-HN (ours) 90.0±0.2 77.1±0.3 83.0±0.2 96.6±0.2 82.9±0.2 89.2±0.1

Table 4: Classification with negative descriptions. Mean
accuracy on images from seen and unseen AwA classes.
Values are averages over all class pairs. CLIP has seen all
classes and therefore is marked as NA for unseen classes.

tive descriptions (right side of the table). For both scenarios,
we keep the same ratio of positive and negative descriptions
for training and testing.

T2M-HN outperforms all baselines by significant gaps.
Presumably, the best baseline, GRaWD, which generates
image features from the textual descriptions, fail to gener-
ate proper images given negative attributes. CLIP perfor-
mance degrades dramatically in these setups, probably be-
cause the CLIP training set consisted of image captions, and
these rarely contain negative descriptions.

5.4. Identifying complex classes membership

Typically, zero-shot classification involves distinguish-
ing “natural categories” [52] like “cats” and “dogs”. How-
ever, We may want to generate classifiers that follow more
complex class boundaries, aggregating over multiple natu-
ral classes. For instance, “animals with horns” combine
several classes from a rhino to a deer.

Figure 5: AUC of seen and unseen classes, in a one class
task that crosses species boundaries: ”Animals that have
horns”. Shown are averages over 53 attributes.

To test 2M-HN in this scenario, we created a set of
one-class classification tasks designed to recognize images
based on properties that cut through class boundaries. To
make the evaluation systematic, we used attributes from
AwA, and eliminate non-visual attributes (like habitats and
diet). The remaining 53 attributes, were split to 30/10/10.
Details of the protocol are given in the supplemental mate-
rial. We report the average Area Under the Recall-Precision
Curve over seen classes and unseen classes.

Results: Figure 5 shows that T2M-HN captures the
complex semantic distinctions of our task better than the



baselines. We attribute this to its ability to draw new classi-
fiers for each new textual description.

5.5. T2M-HN classifiers depend on task context

Current leading text-based ZSL methods map class de-
scriptions or images to a shared representation, but that
mapping is constant for all classification tasks. Our T2M-
HN is designed to use information about the classes of each
specific classification task.

To demonstrate this effect, we use GradCam [55] and
examine what image areas are used in different classifica-
tion tasks. Figure 6 explores two such examples. The upper
three panels show the image regions that are used for clas-
sifying the image as a Dolphin. When classifying dolphin
vs. deer, the model gives most of its weight to the back-
ground (ocean water and waves), which is reasonable since
an image of a deer probably will not contain those elements
in the background. However, when classifying dolphin vs.
killer whale, the model gives most of its weight to the dol-
phin itself, since the background of a dolphin image may be
similar to the background of a whale image.

Figure 6: Class context affects the predicted classifier. Top
left: An image of a dolphin. Top middle: gradcam heat
map when classifying the dolphin image using a model
trained for dolphin vs deer: The model is strongly affected
by the background ocean water, presumably because the
negative class lives on land. Top right: Recognition us-
ing a model for dolphin vs. killer whale: the model attends
to the dolphin, since background would be similar for both
classes. Bottom: A similar effect for a chimpanzee.

5.6. The Impact of Equivariance Design on HNs

To evaluate the effect of the equivariance property on our
HN-based model performance, we compared variants with
and without the equivariance design. We repeat the exper-
iment for an on-demand model with one or two fully con-
nected layers. Figure 7 shows the mean accuracy of the fol-
lowing variants: (1) T2M-HN 1-layer An equivariant HN

Figure 7: Ablation study. Mean classification accuracy (av-
eraged across class pairs) on seen and unseen classes and
their harmonic mean for the AWA and BABEL datasets.

that predicts one equivariant FC layer; (2) 1-layer w.o. EV
A FC HN that predicts one fully connected layer; (3) T2M-
HN 2-layers An equivariant HN that predicts two FC layers
for the on-demand model: The first is invariant and the sec-
ond is equivariant; and (4) 2-layer w.o. EV A FC HN that
predicts two FC layers.

In all cases, the equivariant HN performs better than the
simple fully connected. For AwA, T2M-HN 1-layer per-
forms better than T2M-HN 2-layers. We believe this is be-
cause ResNet backbone separates the images so they are
linearly separable. For BABEL, we used 2s-AGCN as a
features extractor and in that case, T2M-HN 2-layer gen-
eralizes better to unseen classes. Since we use the accu-
racy over the seen classes to choose the model architecture,
throughout the paper, we report the score achieved by T2M-
HN 1-layer.

6. Conclusion
We presented T2M, a learning algorithm that generates

a discriminative model ”on demand”, given test-time class
descriptions only, such that class representations are task-
dependant rather than fixed. We analyzed the group sym-
metries that a T2M model should obey, and characterized
the proper invariance and equivariance properties that en-
sure these symmetries. We then proposed T2M-HN, a deep
architecture T2M model based on HNs, which obeys the
required symmetries. Next, we evaluated our T2M-HN ap-
proach in a series of recognition tasks, considering images,
3D point clouds, and action recognition setups. We experi-
ment with descriptions at varying complexity: From single-
word class names, through few-word class names and long
text descriptions, all the way to “negative” and attribute de-
scriptions. Our results clearly demonstrate the potential of
the T2M modeling approach.
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Supplemental information
A. Hyperparameter optimization

We tune hyperparameters using a held-out set described
below.

For the HN optimizer, we tuned the learn-
ing rate ∈ {0.001, 0.005, 0.01, 0.05, 0.1}, mo-
mentum ∈ {0.1, 0.3, 0.9}, weight decay ∈
{0.00001, 0.0001, 0.001, 0.1}, and number of HN training
epochs ∈ {50, 70, 100}.

For the on-demand target model, we fixed the optimizer
to have a learning rate of 0.01, momentum of 0.9 and weight
decay of 0.01. We tuned the batch size ∈ {16, 32, 64, 128}
and the number of training epochs {1, 2, 3, 5, 10}.

We tried several sizes for the HN architecture with one
hidden layer, {30, 50, 120, 300}. We also describe results
with two layers in the ablation section 5.6.

Recall that we split the data across two dimensions:
classes and samples. When training the backbone model,
we held out 20% of training (seen) classes for training the
HN on classes the backbone does not see. From those
classes, we held out images to serve as a validation set. We
used those images of seen classes to evaluate the architec-
ture performance and chose the hyperparameters based on
that estimation.

B. Equivariant and invariant layers
As an illustrative example, consider a downstream multi-

class classifier f1, that is designed to distinguish cats from
dogs, and another classifier f2, designed to distinguish dogs
from cats. Intuitively, at the optimum, the two classifiers
should be identical except for a switch of two weight vec-
tors at the last layer (w1 in f1 equal to w2 in f2). This has
an important implication for the hypernetwork. Any per-
mutation applied to its input class descriptions should be
reflected in a parallel ordering of the weight vectors that it
produces. We now show how to design a hypernetwork that
obeys this property.

B.1. Equivariance properties of the classifier layer.

Consider a downstream multiclass deep classifier whose
last (classification) layer has a weight vector wi ∈ Rm for
the output class i. The weight matrix of the last layer is
Wlast = {w1, . . . , wk} (See Figure 8a).

Let Sk = {s1, . . . , sk} be a set of k class descriptions
drawn from a distribution Pk, where sj is a text description
of the jth class. The distribution Pk can be characterized by
a two-stage process: First, a set of k classes is drawn from
a large set of classes. Then, a text description is drawn for
each class.

Let τ be a T2M model parameterized by a set of pa-
rameters ϕ. It takes the text descriptors and produces a set

of parameters W of a k-class classification model f(·;W ).
Therefore, we have τϕ : {s1, . . . sk} → Rd, where d is the
dimension of W , that is, the number of parameters of the
classification model f(·;W ), and we denote W = τϕ(S

k).
The HN receives k class descriptors and outputs their

corresponding weights

Wlast = {w1, . . . , wk} = Rlast(τθ ({s1, . . . , sk})), (2)

where Rlast is a function that takes the output of τ and re-
sizes the last k∗m elements to the matrix Wlast. If the input
descriptions are permuted by a permutation P the columns
of the last layer weight should be permuted accordingly:

P(f(x; τϕ(S
k)) = f(x; τϕ(P(Sk)). (3)

This is the equivariant property, and the HN must obey it.

B.2. Invariance properties of intermediate layers

Considering now the layer of the downstream classifier
before the last layer (wd in Figure 8a). A similar argument
holds for earlier (lower) intermediate layers. We now show
that using an equivariant transformation for the last layer
and an invariant transformation for the penultimate layer is
sufficient to ensure that the downstream classifier is equiv-
ariant to permutation over the descriptions.

Theorem B.1. Let f be a two-layer neural network f(x) =
W lastσ(W penx), whose weights are predicted from de-
scriptors Sk = {s1, . . . , sk} such that [W last,W pen] =
τ(Sk). If τ(Sk) is equivariant to a permutation P with re-
spect to W last, and invariant to P with respect to W pen,
then f(x) is equivariant to P with respect to the input of
τ(Sk).

Proof. From the equivariance of f(x) to a permuta-
tion P over the input Sk, we have P(f(xi; τϕ(S

k)) =
f(xi; τϕ(P(Sk)). Denote by m the number of rows of
W last and zpen = σ(W penx). We have

P(f(x; τϕ(S
k)) = P(W lastσ(W penx)) = P(W lastzpen))

= P(


W last

1 zpen

.

.
W last

m zpen

)

=


W last

P(1)z
pen

.

.
W last

P(m)z
pen

 = P(W last)zpen.

(4)

If τ(Sk) is equivariant to P with respect to W last, and
invariant to P with respect to Wpen, then τ(P(Sk)) =
[P(W last),W pen], so

P(f(x; τϕ(S
k)) = P(W last)zpen = f(x; τϕ(P(Sk)).

(5)



AwA triplets by class name
Seen Unseen Harmonic

DeViSE [18] 95.1± 0.7 55.6± 3.6 70.2± 1.2
DEM [71] 94.6± 0.7 64.3± 3.0 76.6± 1.1
CIZSL [14] 97.0± 0.4 62.0± 2.9 75.6± 2.1
GRaWD [24] 96.4± 0.5 68.5± 3.0 80.0± 2.0
T2M-HN (ours) 98.1± 0.1 75.3± 0.1 85.2± 0.1

Table 5: Classification by class descriptions. Mean classifi-
cation accuracy and SEM on images from seen and unseen
classes. Averages are over 100 random class triplets

B.3. Invariant and equivariant Architectures

Figure 8(b) shows the architecture of our equivariant lay-
ers. All inputs are fed into the same fully connected layer
(vertical stripes). To take into account the context of each
input, we sum all the inputs to obtain a context vector. We
fed the context vector to a different fully connected layer
(diagonal stripes) and add it to each one of the processed
inputs. The invariant layer has a similar architecture (Fig-
ure 8(c)), but with additional summation over all equivari-
ant outputs and another different fully connected layer (hor-
izontal stripes).

Our HN uses several equivariant layers to process the in-
put descriptions. We then use one prediction head for each
layer of the output model. The last layer should be equiv-
ariant, so we use an equivariant prediction head. For the
hidden layers, we use invariant layers (See Figure 8(a)).

C. Multi-class classification

To demonstrate the flexibility of our approach to deal
with multiple classes, we evaluated T2M-HN in 3-way clas-
sification tasks. In each task, the on-demand model classi-
fies the image into one out of three classes. For example,
such a task could be to classify whether an image is a dog, a
cat, or an elephant. We use the same workflow as described
in Section 5, with k = 3. Results are in Table 5. T2M-HN
outperforms all baselines by a large margin.

D. 3D point cloud multiclass classification

While T2M-HN is designed to excel in binary classifica-
tion, it can be easily applied to multiclass problems. For
comparison with previous models we evaluate its perfor-
mance in multi-class settings, where T2M-HN predicts a
model that classifies all seen and unseen classes, instead of
two specific classes. Table 6 shows the results of this ex-
periment. We report the result when classifying new sam-
ples from the seen classes (30-classes classification) and

ModelNet40 by class name
Seen Unseen Harmonic

DeViSE [18] 47.2 14.5 22.2
DEM [71] 46.8 7.0 12.3
CIZSL [14] 75.6 6.0 11.0
GRaWD [24] 75.2 10.9 19.0
T2M-HN (ours) 76.3 18.9 30.3

Table 6: 3D point-cloud object recognition using single-
word class names. Multiclass accuracy on seen and unseen
classes for ModelNet-40. The seen accuracy is between 30
classes, and the unseen accuracy is between 10 classes. Fur-
ther description of the protocol can be found in Appendix D.

AwA Super Sets
Seen Unseen Harmonic

DeViSE [18] 53.0± 1.9 50± 0.6 51.5± 0.9
DEM [71] 50.1± 1.4 48.3± 1.8 49.2± 1.6
CIZSL [14] 57.3± 5.6 50.2± 5.8 55.0± 4.0
GRaWD [24] 59.8± 3.5 51.6± 4.8 55.3± 3.1
T2M-HN (ours) 67.2± 5.2 57.3± 5.7 61.9± 5.4

Table 7: Classification using attributes. Values denote the
Area under the Recall-Precision curve averaged over the 13
test attributes ± s.e.m. over these attributes. The seen re-
sults are new images from the seen classes, while the unseen
results are images from unseen classes. Both are evaluated
when classifying only the test attributes. The full protocol
is in G.

from the unseen classes (10-classes classification). T2M-
HN achieves SOTA results in this setup as well. It leverages
the text generalization of the HN model to distinguish be-
tween unseen classes.

We further computed the top-k accuracy achieved by
running T2M-HN for the unseen classes. Figure 9 plots the
accuracy as a function of k. T2M-HN provides superior
accuracy for all tested values of k. To calculate the top-
k performance of the GAN-based models, after generating
the images, we checked if any of K closest neighbors of an
image is of the correct class.

E. AwA GPT-3 descriptions
We use GPT3 [8] to generate 5 synthetic descriptions for

each class of AwA. We use the API provided by OpenAI to
ask ”text-davinci-002” engine with a temperature of 0, max
tokens of 512, and the prompt: ”Suggest 5 definitions for an
animal. Animal: {animal name}. Definitions:”
Animal: moose
Definitions:

1. A large, dark-colored deer with enormous antlers, na-
tive to North America and Europe.



(a) (b) (c)

Figure 8: (a) The T2M-HN architecture for equivariant-invariant hypernetwork. The input is processed by equivariant layers,
followed by a prediction head for each layer of the target on-demand classifier f . The prediction head for Wlast is equivariant.
Heads for earlier layers of f , w1, ...wk are invariant. (b) An architecture for the equivariant layer. Every input is processed
by a fully connected (FC) layer in a Siamese manner (shared weights). Inputs are also summed and processed by a second
FC layer, whose output is added back to each output. (c) An architecture for an invariant layer, following a similar structure
to b.

AWA by class name AWA by GPT descriptions BABEL by class names
Seen Unseen Harmonic Seen Unseen Harmonic Seen Unseen Harmonic

T2M-HN 1-layer 98.9± .1 87.3± .2 92.7± .1 98.7± .1 83.3± .1 90.3± .1 94.9± 0.1 81.8± 0.1 87.9± 0.1
1-layer w.o. EV 98.6± .1 85.9± .2 91.8± .1 97.0± .1 78.2± .1 86.6± .1 81.4± 0.3 74.7± 0.1 77.9± 0.1
T2M-HN 2-layers 98.0± .1 87.2± .1 92.3± .1 96.4± .1 76.7± .1 85.4± .1 92.4± 0.1 86.2± 0.1 89.2± 0.1
2-layers w.o. EV 98.6± .1 75.7± .1 85.5± .1 74.0± .3 57.4± .1 64.6± .2 92.1± 0.2 78.9± 0.2 85.0± 0.2

Table 8: Ablation study. Mean classification accuracy on seen and unseen classes and their harmonic mean for AWA and
BABEL datasets. Values are averages over all class pairs. T2M-HN is the proposed method designed with equivariant and
invariance properties. We evaluate two variants of T2M-HN, one that produces a single FC layer to the on-demand model,
and a second variant that produces two FC layers. To demonstrate the importance of the equivariant design, we evaluate an
HN that produces 1 and 2 layers without an equivariant design.

Easy tasks Hard tasks
Seen Unseen Harmonic Seen Unseen Harmonic

DeViSE 68.4± 0.3 64.4± 0.8 66.3± 0.5 59.0± 1.3 53.4± 4.5 55.9± 2.6
DEM 73.2± 0.3 70.2± 0.6 71.7± 0.3 57.0± 1.0 55.5± 3.1 56.3± 1.7
CIZSL 87.5± 0.1 85.2± 0.3 86.3± 0.2 71.3± 0.7 68.8± 2.1 70.0± 1.2
GRaWD 88.7± 0.1 86.1± 0.3 87.4± 0.2 72.7± 0.7 68.2± 1.9 70.4± 1.1
T2M-HN (ours) 94.7± 0.1 75.7± 0.1 84.1± 0.1 93.1± 0.1 75.2± 0.2 83.2± 0.1

Table 9: Classification by class descriptions for the CUB dataset. Easy tasks are binary classification tasks, where pairs of
birds are from different taxonomy families. In hard classification tasks, bird classes in each pair are from the same taxonomy
family. Values are the mean classification accuracy on images from seen and unseen classes, averaged over all class pairs.

2. An animal of the deer family with humped shoulders,
long legs, and a large head with antlers.

3. A large, awkward-looking mammal with a long face
and humped shoulders.

4. A very large deer with antlers that can spread six feet
or more from tip to tip.

5. The largest member of the deer family, with males
weighing up to 1,800 pounds and having antlers that

can spread up to six feet from tip to tip.

Animal: spider monkey
Definitions:

1. A type of monkey that has long legs and arms and a
long tail.

2. A monkey that is found in the rainforests of Central
and South America.
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Figure 9: Accuracy at k for experiments with 3D point
cloud from ModelNet-40. The solid line is our T2M model,
dashed lines are for the baseline models.

3. A monkey that is known for its acrobatic abilities.
4. A monkey that is considered to be one of the most in-

telligent primates.
5. A monkey that is endangered in many parts of its

range.

Animal: rhinoceros
Definitions:

1. A large, thick-skinned mammal with one or two horns
on its snout, native to Africa and southern Asia.

2. An animal that is hunted for its horn, which is used in
traditional Chinese medicine.

3. A large, herbivorous mammal with a single horn on its
nose, found in Africa and southern Asia.

4. A mammal of the family Rhinocerotidae, having thick,
grey or brown skin and one or two horns on the snout.

5. A very large, plant-eating mammal with one or two
horns on its nose, found in Africa and southern Asia.

Elephant:

1. The largest land animal in the world, with males
weighing up to six tons.

2. A plant-eating mammal with a long trunk, large ears,
and thick, grey skin.

3. A mammal of the family Elephantidae, having a long
trunk, large ears, and thick, grey skin.

4. An intelligent animal that is known for its memory and
its ability to use its trunk for a variety of tasks.

5. An endangered species that is hunted for its ivory
tusks.

F. Data splits
SUN unseen classes: ’volcano’, ’poolroom establish-

ment’, ’veterinarians office’, ’reception’, ’field wild’, ’diner
indoor’, ’garbage dump’, ’server room’, ’vineyard’, ’jew-
elry shop’, ’drugstore’, ’herb garden’, ’lock chamber’, ’tem-
ple east asia’, ’marsh’, ’cottage garden’, ’cathedral out-
door’, ’dentists office’, ’pharmacy’, ’hangar indoor’, ’vol-
leyball court indoor’, ’lift bridge’, ’synagogue outdoor’,
’boathouse’, ’ice shelf’, ’boxing ring’, ’rope bridge’, ’elec-
trical substation’, ’auditorium’, ’chalet’, ’booth indoor’,
’wine cellar barrel storage’, ’greenhouse outdoor’, ’bad-
minton court indoor’, ’thriftshop’, ’cemetery’, ’rainforest’,
’courtyard’, ’underwater coral reef’, ’formal garden’, ’ice
skating rink outdoor’, ’palace’, ’movie theater indoor’,
’dinette home’, ’sandbar’, ’ball pit’, ’amphitheater’

SUN seen classes: All remaining classes.
ModelNet40: We follow [11, 12, 37] and use the 10

classes included in ModelNet-10 as unseen classes, and the
other 30 as seen.

BABEL unseen classes: ’a pose’, ’action with ball’,
’adjust’, ’catch’, ’clean something’, ’communicate (vo-
calise)’, ’crawl’, ’get injured’, ’hand movements’, ’hop’,
’limp’, ’mix’, ’play sport’, ’press something’, ’rolling
movement’, ’shuffle’, ’side to side movement’, ’sneak’,
’spread’, ’support’, ’swing body part’, ’trip’, ’upper body
movements’, ’wait’

BABEL seen classes: All remaining classes.
CUB unseen classes: ’Acadian Flycatcher’, ’American

Crow’, ’American Three Toed Woodpecker’, ’Baltimore
Oriole’, ’Bank Swallow’, ’Belted Kingfisher’, ’Black Billed
Cuckoo’, ’Black Footed Albatross’, ’Black Throated Spar-
row’, ’Boat Tailed Grackle’, ’Bohemian Waxwing’, ’Brandt
Cormorant’, ’Brewer Blackbird’, ’Cape May Warbler’,
’Cedar Waxwing’, ’Chestnut Sided Warbler’, ’Field Spar-
row’, ’Golden Winged Warbler’, ’Grasshopper Sparrow’,
’Gray Crowned Rosy Finch’, ’Great Crested Flycatcher’,
’Great Grey Shrike’, ’Groove Billed Ani’, ’Hooded Ori-
ole’, ’Horned Grebe’, ’Indigo Bunting’, ’Least Auklet’,
’Least Tern’, ’Marsh Wren’, ’Mockingbird’, ’Northern
Flicker’, ’Northern Waterthrush’, ’Pacific Loon’, ’Pied
Billed Grebe’, ’Pomarine Jaeger’, ’Purple Finch’, ’Red
Legged Kittiwake’, ’Rhinoceros Auklet’, ’Sayornis’, ’Scott
Oriole’, ’Tree Sparrow’, ’Tree Swallow’, ’Western Grebe’,
’Western Gull’, ’Western Wood Pewee’, ’White Breasted
Kingfisher’, ’White Eyed Vireo’, ’White Pelican’, ’Wil-
son Warbler’, ’Yellow Bellied Flycatcher’, ’Yellow Billed
Cuckoo’

CUB seen classes: All remaining classes.

G. Attributes used for one-class classification
As mentioned in section 5.4, we use some of the at-

tributes from the AwA dataset to define one-class classifi-



cation tasks. First, we removed non-visual attributes. Then,
we randomly split the remaining 53 attributes into 30 train,
10 validation, and 13 test attributes. We split both the im-
ages and the attributes, constructing 4 groups of images and
attributes: (1) Training images from training attributes and
training classes, used to train the hypernetwork; (2) Vali-
dation images from the training classes, with the valida-
tion attributes used to tune hyperparameters; (3) Test im-
ages from seen classes, new images of test attributes, whose
class was seen during training (but not the specific images);
and (4) Test images from unseen classes, new images of test
attributes, whose class was not seen during training. We re-
port the average Area under the Recall-Precision curve over
seen (group (3)) and unseen classes (group (4)). The results
are shown in Figure 5 and in Table 7. The attributes split is
as follows:

AwA train attributes: ’orange’, ’red’, ’longneck’,
’horns’, ’tusks’, ’flys’, ’desert’, ’cave’, ’jungle’, ’wa-
ter’, ’bush’, ’lean’, ’forest’, ’gray’, ’strainteeth’, ’stripes’,
’mountains’, ’arctic’, ’paws’, ’hooves’, ’pads’, ’small’,
’furry’, ’ground’, ’patches’, ’white’, ’fields’, ’bipedal’,
’toughskin’, ’plains’.

AwA validation attributes: ’buckteeth’, ’chewteeth’,
’yellow’, ’hairless’, ’bulbous’, ’big’, ’flippers’, ’tree’,
’walks’, ’coastal’.

AwA test attributes: ’quadrapedal’, ’black’, ’blue’,
’ocean’, ’longleg’, ’spots’, ’hands’, ’claws’, ’muscle’,
’meatteeth’, ’tail’, ’brown’, ’swims’.

H. Results in Tables
Numeric results for Figure 7 and Figure 4 are in tables 8

and 9, respectively.


