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Abstract

While Natural Language Processing (NLP)
algorithms keep reaching unprecedented
milestones, out-of-distribution generaliza-
tion is still challenging. In this paper we
address the problem of multi-source adap-
tation to unknown domains: Given labeled
data from multiple source domains, we aim
to generalize to data drawn from target do-
mains that are unknown to the algorithm at
training time. We present an algorithmic
framework based on example-based Hyper-
network adaptation: Given an input exam-
ple, a TS encoder-decoder first generates a
unique signature which embeds this exam-
ple in the semantic space of the source do-
mains, and this signature is then fed into a
Hypernetwork which generates the weights
of the task classifier. In an advanced ver-
sion of our model, the learned signature
also serves for improving the representation
of the input example. In experiments with
two tasks, sentiment classification and natu-
ral language inference, across 29 adaptation
settings, our algorithms substantially out-
perform existing algorithms for this adapta-
tion setup. To the best of our knowledge,
this is the first time Hypernetworks are ap-
plied to domain adaptation or in example-
based manner in NLP.!

1 Introduction

Deep neural networks (DNNs) have substantially
improved natural language processing (NLP),
reaching task performance levels that were consid-
ered beyond imagination until recently (Conneau
and Lample, 2019; Brown et al., 2020). How-
ever, this unprecedented performance typically de-
pends on the assumption that the test data is drawn
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from the same underlying distribution as the train-
ing data. Unfortunately, as text may stem from
many origins, this assumption is often not met in
practice. In such cases, the model faces an out-of-
distribution (OOD) generalization scenario, which
often yields significant performance degradation.

To alleviate this difficulty, several OOD gen-
eralization approaches proposed to use unlabeled
data from the target distribution. For example, a
prominent domain adaptation (DA, (Daumé III,
2007; Ben-David et al., 2010)) setting is unsu-
pervised domain adaptation (UDA, (Ramponi and
Plank, 2020)), where algorithms use labeled data
from the source domain and unlabeled data from
both the source and the target domains (Blitzer
et al., 2006, 2007; Ziser and Reichart, 2017,
2018b). In many real-world scenarios, however, it
is impractical to expect training-time access to tar-
get domain data. This could happen, for example,
when the target domain is unknown, when collect-
ing data from the target domain is impractical or
when the data from the target domain is confiden-
tial (e.g. in healthcare applications or in applica-
tions that involve user data). In order to address
this setting, three approaches were proposed.

The first approach follows the idea of do-
main robustness, generalizing to unknown do-
mains through optimization methods which fa-
vor robustness over specification (Hu et al., 2018;
Oren et al., 2019; Sagawa et al., 2020; Wald et al.,
2021). Particularly, these approaches train the
model to focus on domain-invariant features and
overlook properties that are associated only with
some specific source domains. In contrast, the
second approach implements a domain expert for
each source domain, hence keeping the knowl-
edge acquired from each domain separated from
the knowledge acquired from the others. In this
mixture-of-experts (MoE) approach (Kim et al.,
2017; Guo et al., 2018; Wright and Augenstein,
2020), an expert is trained for each domain sepa-



rately, and the predictions of these experts are ag-
gregated through averaging or voting.

To bridge the gap between these opposing ap-
proaches, a third intermediate approach has been
recently proposed by Ben-David et al. (2021).
Their PADA algorithm, standing for a Prompt-
based Autoregressive Approach for Adaptation to
Unseen Domains, utilizes both domain-invariant
and domain-specific features to perform example-
based adaptation. Particularly, given a test exam-
ple it generates a unique prompt that maps this ex-
ample to the semantic space of the source domains
of the model, and then conditions the task predic-
tion on this prompt. In PADA, a T5-based algo-
rithm (Raffel et al., 2020), the prompt-generation
and task prediction components are jointly trained
on the source domains available to the model.

Despite their promising performance, none of
the previous models explicitly learns both shared
and domain-specific aspects of the data, and ef-
fectively applies them together. Particularly, ro-
bustness methods focus only on shared proper-
ties, MoE methods train a separate learner for
each domain, and PADA trains a single model us-
ing the training data from all the source domains,
and applies the prompting mechanism in order to
exploit example-specific properties. This paper
hence focuses on improving generalization to un-
seen domains by explicitly modeling the shared
and domain-specific aspects of the input.

To facilitate effective parameter sharing be-
tween domains and examples, we propose a mod-
eling approach based on Hypernetworks (HNs, Ha
et al. (2017)). HNs are networks that generate the
weights of another target network, that performs
the learning task. The input to the HN defines the
way information is shared between training exam-
ples. To the best of our knowledge, we are the first
to apply HNs for DA in NLP.

We propose three models of increasing com-
plexity. Our basic model is Hyper-DN, which
explicitly models the shared and domain-specific
aspects of the training domains. Particularly, it
trains the HN on training data from all source do-
mains, to generate classifier weights in a domain-
specific manner. The next model, Hyper-DRF, an
example-based HN, performs parameter sharing at
both the domain and the example levels. Partic-
ularly, it first generates an example-based signa-
ture as in PADA, and then uses this signature as
input to the HN so that it can generate example-

specific classifier weights.> Finally, our most ad-
vanced model is Hyper-PADA which, like Hyper-
DREF, performs parameter sharing at both the ex-
ample and domain levels, using the above signa-
ture mechanism. Hyper-PADA, however, does that
at both the task classification and the input repre-
sentation levels. For a detailed description see §3.

We follow Ben-David et al. (2021) and exper-
iment in the any-domain adaptation setup (§4,5).
Concretely, given access to labeled datasets from
multiple domains, we perform leave-one-out ex-
periments, training the model on all domains but
one and testing it on the remaining domain. Fur-
ther, while our models are designed for cross-
domain (CD) generalization, we can also explore
cross-language cross-domain adaptation (CLCD)
setups, by utilizing a multilingual pre-trained lan-
guage model. Hyper-PADA outperforms an off-
the-shelf SOTA model (a fine-tuned T5-based
classifier, without any domain adaptation effort)
by 9.5% (accuracy), 8.4% (accuracy) and 14.8%
(macro-F1) in CLCD and CD sentiment classifi-
cation (12 settings each) and CD MNLI (5 set-
tings), on average, respectively. Moreover, our
HN-based methods outperform previous models
from the three families described above. Finally,
ablative comparisons between our HN-based al-
gorithms shed light on the relative importance of
their components.

2 Related Work

2.1 Domain Adaptation

Domain Adaptation (DA) is a fundamental chal-
lenge in NLP, with two common setups: super-
vised and unsupervised. In supervised DA, the
algorithm utilizes a small amount of labeled data
from the target domain (Daumé III and Marcu,
2006; Bollegala et al., 2011), while in unsuper-
vised DA it has access to labeled data form the
source domains and unlabeled data from both
source and target domains (Blitzer et al., 2006,
2007; Reichart and Rappoport, 2007; Glorot et al.,
2011). Most recent DA research addresses the
more realistic UDA setup. Since the rise of DNNss,
the main focus of UDA resaerch shifted to repre-
sentation learning methods (Titov, 2011; Glorot
et al.,, 2011; Ganin and Lempitsky, 2015; Ziser
and Reichart, 2017, 2018a, 2019; Rotman and

2DRFs stand for Domain Related Features and DN stands
for Domain Name. See §3.2



Reichart, 2019; Han and Eisenstein, 2019; Ben-
David et al., 2020; Lekhtman et al., 2021).

The recent DA setup that we consider in this pa-
per assumes no training-time knowledge about the
target domain (denoted as any-domain adaptation
by Ben-David et al. (2021)). As discussed in §1,
some papers that addressed this setup follow the
domain robustness path (Arjovsky et al., 2019),
while others learn a mixture of domain experts
(Wright and Augenstein, 2020) or train the model
on data from multiple domains and adapt test ex-
amples from unknown domains through prompt-
ing (Ben-David et al., 2021). Unlike previous
DA work in NLP, we perform adaptation through
hypernetworks which are trained to generate the
weights of the task classifier in a domain-based
or example-based manner. This framework allows
us to both explicitly model domain-invariant and
domain-specific aspects of the training data, and
perform example-based adaptation.

Li et al. (2021) perform example-based adapta-
tion. They address the same setup as us, multi-
source adaptation to unknown domains, but for
dependency parsing. Their model integrates two
designated NNs which generate domain-invariant
and domain-specific representations for each input
example. However, they do not apply HNs and
hence cannot share parameters at the task classifi-
cation level as we do. Moreover, they send the en-
tire input example into the designated NNs, while
we aim to learn a more sophisticated signature
mechanism which aligns the input example with
the source domains ((Ben-David et al., 2021), see
§3), in order to facilitate effective parameter shar-
ing across domains and examples, at both the clas-
sifier and the representation learning levels.

2.2 Hypernetworks

Hypernetworks (Ha et al., 2017) are (typically
small) networks that learn to generate weights for
other networks. Intuitively, HNs can generate di-
verse personalized models, conditioned on the in-
put. HNs were applied in areas like computer
vision (Klein et al., 2015; Riegler et al., 2015;
Klocek et al., 2019), continual learning (von Os-
wald et al., 2020), federated learning (Shamsian
et al., 2021), weight pruning (Liu et al., 2019),
Bayesian neural networks (Krueger et al., 2017;
Ukai et al., 2018; Pawlowski et al., 2017; Deutsch
etal., 2019), multi-task learning (Shen et al., 2018;
Klocek et al., 2019; Serra et al., 2019; Meyerson

and Miikkulainen, 2019) and block code decoding
(Nachmani and Wolf, 2019).

Despite being widely used in other ML
branches, HNs research in NLP is limited. HNs
were shown to be effective for language model-
ing (Suarez, 2017) and machine translation (Pla-
tanios et al., 2018). Moreover, Ustiin et al.
(2020) and Mahabadi et al. (2021) applied HNs to
Transformer architectures (Vaswani et al., 2017)
in cross-lingual parsing and multi-task learning,
by generating adapter (Houlsby et al., 2019)
weights and keeping the pre-trained language
model weights fixed. In contrast to previous
Transformer-based approaches, we apply HNs for
generating the weights of a task classifier, where
we train the HN jointly with the fine-tuning of
a large LM. Furthermore, following Ben-David
et al. (2021) we perform example-based adapta-
tion, a novel application of HNs in NLP: To the
best of our knowledge, HNs have not been applied
in NLP in an example-based manner before.

3 Domain Adaptation with
Hypernetworks

In this section, we present our HN-based model-
ing framework for domain adaptation. We present
three models in increased order of complexity: We
start by generating parameters only for the task
classifier in a domain-based manner (Hyper-DN),
proceed to example-based classifier parametriza-
tion (Hyper-DRF) and, finally, introduce example-
based parametrization at both the classifier and the
text representation levels (Hyper-PADA).

Throughout this section we use the running ex-
ample of Table 1. This is a Natural Language
Inference (NLI) example from one of our exper-
imental MNLI (Williams et al., 2018) setups. In
this task, the model is presented with two sen-
tences, Premise and Hypothesis, and it should de-
cide the relationship of the latter to the former: En-
tailment, Contradiction or Neutral (see §4).

§3.1 describes the model architectures and their
training procedure. §3.2 then delves into the spe-
cific details of the DRF scheme, borrowed from
Ben-David et al. (2021). The DRFs are utilised
in order to embed input examples in the seman-
tic space of the source domains, hence supporting
example-based classifier parametrization and im-
proved example representation.
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Figure 1: The four models representing the evolution of our HN-based domain adaptation framework.
From left to right: T5-NoDA is a standard NLP model comprised of a pre-trained T5 encoder with a
classifier on top of it, both are fine-tuned with the downstream task objective. Hyper-DN employs an
additional hypernetwork (HN), which generates the classifier (CLS) weights given the domain name (or
an “UNK” specifier for examples from unknown domains). Hyper-DRF and Hyper-PADA are multi-
stage multi-task models (first-stage inputs are in red, second stage inputs in black), comprised of a T5
encoder-decoder, a separate TS5 encoder, a HN and a task classifier (CLS). At the first stage, the T5
encoder-decoder is trained for example-based DRF signature generation (§3.2). At the second stage,
the HN and the TS encoder are jointly trained using the downstream task objective. In Hyper-PADA,
the DRF signature of the first stage is applied both for example representation and HN-based classifier
parametrization, while in Hyper-DREF it is applied only for the latter purpose. In all HN-based models,

our HN is a simple two-layer feed-forward NN (§4.3).

3.1 Models

Hyper Domain Name (Hyper-DN) Our basic
model (Figure 1b) integrates a pre-trained TS lan-
guage encoder, a classifier (CLS), and a hypernet-
work (HN), which generates the classifier weights.
Hyper-DN casts the domain name as the input of
the HN. Since the domain name is unknown at
test-time inference, we use a special “UNK” token
to represent unknown domains at this stage, for all
input examples. In order to make this dummy do-
main name familiar to the model, during training
we sample an « proportion of the training exam-
ples for which we use the “UNK” token as the HN
input, instead of the domain name. This architec-
ture supports parameter sharing between the input
domains, and optimizes the weights for examples
from unknown domains — all at the classifier level.
In the example of Table 1, the premise and hy-
pothesis of the test example are fed into the TS
encoder, and the “UNK” token is fed to the HN.
In this model, there is no generation of either a
domain-name or an example-specific signature.

Hyper-DRF Parameter sharing based on the do-
main of an input example may not be sufficient, es-
pecially that the boundaries between domains are

not always well defined. As an example, the sen-
tence pair of our running example is taken from
the Government domain but is also semantically
related to the Travel domain. Thus, we present
Hyper-DRF (Figure 1c), an example-based adap-
tation architecture, which makes use of domain-
related features (DRFs, see § 3.2) in addition to
the domain name. Importantly, this model may
connect the input example to semantic aspects of
multiple source domains.

Hyper-DRF is a multi-stage multi-task autore-
gressive model, which first generates a DRF sig-
nature for the input example, and then uses this
signature as an input to the HN. The HN, in turn,
generates the task-classifier (CLS) weights, but,
unlike in Hyper-DN, these weights are example-
based rather than domain-based. The model is
comprised of the following components: (1) a TS
encoder-decoder model which generates the DRF
signature of the input example in the first stage
(travel: city, area, town, reports, modern in our
running example); (2) a (separate) TS encoder to
which the example is fed in the second stage; and
(3) a HN which is fed with the DRF signature,
as generated in the first stage, and generates the



Premise. = Homes not located on one of these
roads must place a mail receptacle along the route
traveled.

Hypothesis. Other roads are far too rural to pro-
vide mail service to.

Domain. Government.

Label. Entailment.

DREF Signature. travel: city, area, town, reports,
modern

Fiction: jon, tommy, tuppence, daan, said,
looked, man, poirot, eyes, drew, inglethorp, mrs,
Jjulius, adrin, asked, sir, knew, doro, vandemeyer,
stared, nodded, cavendish, fell, walked, dave
Slate: clinton, president, says, york, percent, crit-
ics, new, bush, sex, starr, political, book, story, ar-
ticle, bill, newsweek, reports, according, robert,
press, wrote, may, show, issues, cover
Telephone: yeah, know, well, really, think, like,
lot, mean, huh, get, right, hum, guess, okay, going,
got, things, stuff, kind, pretty, good, probably, kids,
something, yes

Travel: century, island, built, city, museum, tem-
ple, ancient, town, palace, located, west, visitors,
beach, sea, shops, church, area, south, roman,
modern, known, tourists, along, visit, river

Table 1: An example of Hyper-DRF and Hyper-
PADA application to an MNLI example. In this
setup the source training domains are Fiction,
Slate, Telephone and Travel and the unknown tar-
get domain is Government. The top part presents
the example and the DRF signature generated by
the models. The bottom-part presents the DRF set
of each source domain in this setup.

weights of the task-classifier (CLS). This CLS is
fed with the example representation, as generated
by the T5 encoder of (2), to predict the task label.

Below we discuss the training of this model in
details. The general scheme is as follows: We first
train the T5 encoder-decoder of the first stage ((1)
above), and then jointly train the rest of the ar-
chitecture ((2) and (3) above), which is related to
the second stage. For the first training stage we
have to assign each input example a DRF signa-
ture. In §3.2 we provide the details of how, fol-
lowing Ben-David et al. (2021), the DRF sets of
the source training domains are constructed based
on the source domain training corpora, and how a
DRF signature is comprised for each training ex-
ample in order to effectively train the DRF sig-
nature generator ((1) above). For now, it is suffi-
cient to say that the DRF set of each source domain

is comprised of words that are strongly associated
with this domain, and the DRF signature of each
example is a sequence of DRFs (words).

During inference, when introduced to an exam-
ple from an unknown domain, Hyper-DRF gen-
erates its DRF signature using its trained gener-
ator (TS5 encoder-decoder). This way, the sig-
nature of a test example may consist of features
from the DRF sets of one or more source domains,
forming a mixture of semantic properties of these
domains. For example, in our running example,
while the input sentence pair is from the unknown
Government domain, the model generates a signa-
ture based on the Travel and Slate domains. Im-
portantly, unlike in Hyper-DN, there is no need in
an “UNK?” token as input to the HN since the DRF
signatures are example-based.

Hyper-PADA While Hyper-DRF implements
example-based adaptation, parameter-sharing is
modeled only at the classifier level: The language
representation (with the TS encoder) is left un-
touched. Our final model, Hyper-PADA, casts the
DRF-based signature generated at the first stage
of the model, both as a prompt concatenated to the
input example before it is fed to the TS language
encoder, and as an input to the HN.

Specifically, the architecture of Hyper-PADA
(Figure 1d) is identical to that of Hyper-DRF. At
its first stage, which is identical to the first stage of
Hyper-DRE, it employs a generative TS5 encoder-
decoder which learns to generate an example-
specific DRF signature for each input example.
Then, at its second stage, the DRF signature is
used in two ways: (A) unlike in Hyper-DRE, it
is concatenated to the input example as a prompt,
and the concatenated example is then fed into a
TS5 encoder, in order to create a new input repre-
sentation (in Hyper-DRF the original example is
fed into the T5 encoder); and (B) as in Hyper-
DREF, it is fed to the HN which generates the task-
classifier weights. Finally, the input representation
constructed in (A) is fed into the classifier gener-
ated in (B) in order to yield the task label.

Training While some aspects of the selected
training protocols are based on development data
experiments (§4), we discuss them here in order to
provide a complete picture of our framework.

For Hyper-DN, we found it most effective to
jointly train the HN and fine-tune the T5 en-
coder using the task objective. As discussed
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Figure 2: Hyper-PADA training. The generative
(T5 encoder-decoder) and discriminative (HN, T5
Ecnoder and CLS) components are trained sepa-
rately, using source domains examples.

above, Hyper-DRF and Hyper-PADA are multi-
stage models, where the HN (in both models)
and the TS5 language encoder (in hyper-PADA
only) utilize the DRF signature generated in the
first stage by the TS5 encoder-decoder. Our de-
velopment data experiments demonstrated signif-
icant improvements when using one TS encoder-
decoder for the first stage, and a separate TS5 en-
coder for the second stage. Moreover, since the
output of the first stage is discrete (a sequence of
words), we cannot train all components jointly.

Hence, as illustrated in Figure 2 (for Hyper-
PADA, but the same applies for Hyper-DRF), we
train each stage of these models separately. First,
the TS5 encoder-decoder is trained to generate the
example-based DRF signature (§3.2). Then, the
HN and the (separate) TS encoder are trained
jointly with the task objective.

We next motivate the use of DRFs, provide their
definition, and present their selection process for
each source domain. We then describe the DRF-
based prompt/signature annotation process, which
is used for training.

3.2 Domain Related Features (DRFs)

In order to perform example-based domain adap-
tation, the first stage of the Hyper-DRF and Hyper-
PADA models maps each input example into a se-
quence of Domain Related Features (DRFs). Se-
lecting the DRF sets of the source domains is
hence crucial for these models, as they should al-
low the models to map input examples to the se-
mantic space of the source domains. Since a key
goal of example-based adaptation is to account for
soft domain boundaries, it is important that the

DREF set of each source domain should reflect both
the unique semantic aspects of this domain and the
aspects it shares with other source domains.

To achieve these goals, we follow the defini-
tions, selection, and annotation processes in Ben-
David et al. (2021). For completeness, we briefly
describe these ideas here.

DRF Set Construction Let S be the set of all
source domains, and S; € S the domain for which
we construct the DRF set. We perform the follow-
ing selection process, considering all the training
data from the participating source domains. First,
we define the domain label of a sentence to be 1 if
the sentence is from S; and O otherwise. We then
look for the top [ words with the highest mutual in-
formation (MI) with the 0/1 labels. Then, since MI
could indicate association with each of the labels
(related to the domain (1) or not (0)), and we are
interested only in words associated with the do-
main, we select only words that meet the criterion:

Cs\s, (w)
W L )
Cs;(w) — P Cs; (1) > 0

Where Cg\ g, (w) is the count of the word w in all
of the source domains except Sj, Cs, (w) is the
word count in \S; and p is a domain-specificity pa-
rameter: The smaller it is, the stronger is the asso-
ciation. The DRF set of S is denoted with R;.

Annotating DRF-based Signatures for Train-
ing In order to train the DRF signature generator
of Hyper-DRF and Hyper-PADA we have to con-
struct a DRF signature for each training example.
Our goal in this process is to match each training
example with those DRFs in its domain’s DRF set
that are most representative of its semantics. We
do this in an automatic manner.

Let wq, ...w, be the tokens of a sentence = from
the domain S;. Each DRF r; € R; is assigned
with the following score:

score(rj,{w1,..w,} € x) = iglinn{s(rj,wi)}

s(rj,wi) = | @(ry) — ®(wi)|[3

where ®(z) is the embedding of x in the pre-
trained embedding layer of an off-the-shelf BERT
model. Then, let 77, ..., T}, be the kK DRFs with the
lowest scores and D the domain name. We define
the DRF signature of z to be the following string:
“D:Ty,...Ty".



Sentence. This documentary is poorly pro-
duced, has terrible sound quality and stereotypi-
cal "life affirming"” stories. There was nothing in
here to support Wal-Mart, their business practices
or their philosophy.
Domain. DVD.
Label. Negative.
DRF Signature.
story

music: history, rock, sound,

Table 2: An example of Hyper-DRF and Hyper-
PADA application to a sentiment classification ex-
ample. The source domains are Books, and Music.
Generated DRF features from the Books and Mu-
sic domains are in blue and green, respectively.

To summarize, we utilize this annotation only
during training, as a training signal for the DRF
signature generator (in stage 1 of both Hyper-DRF
and Hyper-PADA). Tables 1 and 2 provide MNLI
and sentiment classification examples and their
DRF signatures, as generated by Hyper-PADA and
Hyper-DREF in a specific adaptation setup.

4 Experimental Setup

4.1 Tasks, Datasets, and Setups

While our focus is on domain adaptation, the
availability of multilingual pre-trained language
encoders allows us to consider two setups:
(1) Cross-domain transfer (CD); and (2) cross-
language cross-domain transfer (CLCD). We con-
sider multi-source adaptation and experiment in
a leave-one-out fashion: In every experiment we
leave one domain (CD) or one domain/language
pair (CLCD) out, and train on the datasets that be-
long to the other domains (CD) or the datasets that
belong to both other domains and other languages
(CLCD; neither the target domain nor the target
language are represented in the training set).

Cross-domain Transfer (CD) for Natural Lan-
guage Inference We experiment with the MNLI
dataset (Williams et al., 2018).3 In this task, each
example consists of a premise-hypothesis sentence
pair and the relation between the the latter and the
former: Entailment, contradiction, or neutral. The
corpus consists of ten domains, five of which are
split to train, validation, and test sets, while the
other five do not have training sets. We experiment

*https://cims.nyu.edu/~sbowman/
multinli/

Sentiment Analysis (En, De, Fr, Jp)

Domain Training (src) | Dev (src) | Test (trg)
Books (B) 500 100 2000
DVD (D) 500 100 2000
Music (M) 500 100 2000
MNLI (En)
Domain Training (src) | Dev (src) | Test (trg)
Fiction (F) 2500 200 1,973
Government (G) 2500 200 1,945
Slate (SL) 2500 200 1,955
Telephone(TL) 2500 200 1,966
Travel (TR) 2500 200 1,976

Table 3: The number of examples in each domain
(and language) of our two tasks. We denote the
examples used when a domain is included as a
source domain (src), and when it is the target do-
main (trg). For sentiment we present the number
of examples in a single language, while there are
four different languages - English (En), Deutsch
(De), French (Fr), and Japanese (Jp), each with the
same number of examples per domain.

with the former five: Fiction (F), Government (G),
Slate (S), Telephone (TL), and Travel (TR).

Since the MNLI test sets are not publicly avail-
able, we use the validation sets as our test sets
and split the train sets to train and validation. We
downsample each domain to have 2500 train and
200 validation examples, focusing on a challeng-
ing low-resource adaptation setup (Table 3).

Cross-language Cross-domain (CLCD) and
Multilingual Cross-domain (CD) Transfer for
Sentiment Analysis We experiment with the
task of sentiment classification, using the Websis-
CLS-10 dataset (Prettenhofer and Stein, 2010),*
which consists of Amazon reviews from 4 lan-
guages (English (En), Deutsch (De), French (Fr),
and Japanese (Ja)) and 3 product domains (Books
(B), DVDs (D), and Music (M)).

We perform one set of multilingual cross-
domain (CD) generalization experiments and one
set of cross-language cross-domain (CLCD) ex-
periments. In the former, we keep the training lan-
guage fixed and generalize across domains, while
in the latter we generalize across both languages
and domains. Hence, experimenting in a leave-
one-out fashion, in the CLCD setting we focus
each time on one domain/language pair. For in-
stance, when the target pair is English-Books, we
train on the training sets of the {French, Deutsch,

*https://zenodo.org/record/
3251672#.YdQiIWhBwQ8



Japanese} languages and the {Movies, Music} do-
mains (a total of 6 sets), and the test set consists of
English examples from the Books domain. Like-
wise, in the CD setting we keep the language fixed
in each experiment, and generalize from two of the
domains to the third one. We hence have 12 CLCD
experiments (one with each language/domain pair
as target) and 12 CD experiments (for each lan-
guage we perform one experiment with each do-
main as target). As for MNLI, we downsample
each language-domain pair to include 500 train
and 100 validation examples (Table 3).

4.2 Models and Baselines

We compare our hypernetwork based models
(Hyper-DN, Hyper-DRF, and Hyper-PADA) to
models from three families (see §1): (a) domain
expert models that does not share information
across domains: a model trained on the source
domains and applied to the target domain with
no adaptation effort (75-NoDA); and a mixture
of domain-specific experts, where a designated
model is trained on each target domain, and test
decisions are made through voting between the
predictions of these models (75-MoE, (Wright and
Augenstein, 2020)); (b) domain robustness mod-
els, targeting generalization to unknown distribu-
tions through objectives that favor robustness over
specification (75-DANN (Ganin and Lempitsky,
2015) and 75-IRM (Arjovsky et al., 2019)); and (c)
example-based multi-source adaptation through
prompt learning (PADA (Ben-David et al., 2021),
the SOTA model for our setup).

Below we briefly discuss each of these models.
All models, except from T5-MoE are trained on a
concatenation of the source domains training sets.

(a.1) T5-No-Domain-Adaptation (T5-NoDA)
A model consisting of a task classifier on top of
a TS encoder. The entire architecture is fine-tuned
on the downstream task (see Figure 1a).

(a.2) T5-Mixture-of-Experts (T5-MoE) We
fine-tune an expert model (with an identical archi-
tecture to the one used by 75-NoDA) on the train-
ing data from each domain. At inference, we av-
erage the class probabilities of all experts, and the
class with the maximal probability is selected.

(b.1) TS5-Invariant-Risk-Minimization (T5-
IRM) An expert with the same architecture as
T5-NoDA, but with an objective term that penal-
izes representations that have different optimal

classifiers across domains.

(b.2) T5-Domain-Adversarial-Network (T5-
DAN) An expert with the same architecture
as T5-NoDA, but with an additional adversarial
domain classifier head (fed by the TS5 encoder)
which facilitates domain invariant representations.

(c.1) PADA A TS5 encoder-decoder that is fed
with each example and generates its DRF signa-
ture. The example is then appended with this sig-
nature as a prompt, fed again to the TS5 encoder
and the resulting representation is fed into the task
classifier. We follow the implementation and train-
ing details from (Ben-David et al., 2021).

For each setup we also report an upper-bound:
The performance of the model trained on the train-
ing sets from all source domains (or source lan-
guage/domain pairs in CLCD) including that of
the target, when applied to the target domain’s (or
language/domain pair in CLCD) test set.

4.3 Implementation Details

For all the pre-trained models we use the Hug-
gingface Transformers library (Wolf et al., 2020).
For the T5 model we use the T5-base model (Raf-
fel et al., 2020) for MNLI, and the MT5-base
model (Xue et al., 2021) for sentiment classifica-
tion. For contextual representation of the HN input
(domain name or “UNK’ in Hyper-DN, DREF sig-
nature in Hyper-DRF and Hyper-PADA), we use
the BERT-base-uncased and the mBERT-based-
uncased models, for MNLI and sentiment classi-
fication, respectively.

We choose p = 1.5 for the DRF set construction
process. In the DRF signature annotation process,
we take the kK = 5 most associated DRFs for each
input example. When generating the signature (in
Hyper-DRF and Hyper-PADA) we employ the Di-
verse Beam Search algorithm (Vijayakumar et al.,
2016) with the TS decoder, using the following pa-
rameters: 5 sequences, with a beam size of 5, a 5
beams group and a diversity penalty of 0.1.

The HN consists of two linear layers of the same
input and output dimensions (1 x 768), each of
which is followed by a ReL.U activation layer. The
output of the second layer is fed into two parallel
linear layers, one to predict the weights of the lin-
ear classifier (a 2 x 768 matrix), and one to predict
its bias (a 1 x 2 vector). For task classification, we

https://github.com/huggingface/
transformers



Deutsch English French Japanese

B D M B D M B D M B D M Avg
T5-NoDA 77.1 75.8 63.9 78.4 78.8 64.5 83.0 82.6 75.1 61.5 79.9 797 || 75.0
T5-MoE 81.9 76.6 79.6 86.0 81.2 81.6 85.0 84.9 712 82.2 83.6 820 | 81.8
T5-DANN 82.1 77.8 80.8 84.6 78.8 79.0 84.2 82.6 772 68.7 78.8 81.6 || 79.7
T5-IRM 712 70.2 75.8 80.8 72.5 73.0 82.3 80.6 78.4 75.5 75.8 784 | 762
PADA 57.7 74.8 74.2 71.8 75.9 78.8 81.8 82.0 76.8 772 78.8 80.0 || 75.8
Hyper-DN 86.2 80.8 84.4 85.6 842 83.4 86.5 84.5 81.6 81.3 82.0 832 || 837
Hyper-DRF 85.9 81.2 84.6 86.4 84.0 83.9 85.7 85.5 81.4 82.2 82.0 839 | 839
Hyper-PADA | 85.7iF | 81.8%ic+ | 85,0%t+ | 86.01° | 84.4%io+ | 85 1%+ | 86.6%iot | 8591t | g1.ghiot | g3.9io+ | g3.9%o+ | g3 8ot | 84.5
Upper-bound | 86.7 83.8 86.4 88.7 85.9 86.9 87.9 873 83.9 84.4 86.4 86.9 | 863

Table 4: CLCD sentiment classification accuracy. The statistical significance of the Hyper-PADA results
(with the McNemar paired test for labeling disagreements (Gillick and Cox, 1989), p < 0.05) is denoted
with: & (vs. the best of Hyper-DN and Hyper-DRF), + (vs. the best domain expert model), ¢ (vs. the
best domain robustness model), and I (vs. PADA (example-based adaptation)).

o En '~ b a F G S TL TR || Avg
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T5-MoE 55.6 65.3 57.7 581 | 643 | 60.2

Ll IR I A I T5-DANN 72.1 76.9 65.7 74.8 76.1 || 73.1
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wmemnon] 01 16 15 | s 0 D U I Table 5: Cross-domain MNLI results (Macro-F1).
T 5 % 8§ 5 m o 5 w8 5 v oae The statistical significance of Hyper-PADA vs. the

Figure 3: Accuracy improvements over T5-NoDA,
in cross-domain (CD) generalization for four lan-
guages: German, English, French, and Japanese.
From the 28 out of 36 settings where Hyper-PADA
outperforms the best model in each of the base-
lines groups, in 23 cases the difference is signifi-
cant (we follow the same protocol as in Table 4).

feed the linear classifier (CLS) with the average of
the encoder token representations.

Generative models are trained for 3 epochs and
discriminative models for 5 epochs. We use the
Cross Entropy loss for all models, optimized with
the ADAM optimizer (Kingma and Ba, 2015), a
batch size of 16, and a learning rate of 5 * 1076.
We limit the number of input tokens to 128.

5 Results

Table 4 and Figure 3 present sentiment classifi-
cation accuracy results for CLCD and CD trans-
fer, respectively (12 settings each), while Table 5
reports Macro-F1 results for MNLI in 5 CD set-
tings. We report accuracy or F1 results for each
setting, as well as the average performance across
settings. Finally, we report statistical significance
following the guidelines at Dror et al. (2018), com-
paring Hyper-PADA to the best performing model
in each of the three baseline groups discussed in
§4: (a) domain expert models (T5-NoDA and T5-

best baseline from each group (with the Bootstrap
test, p < 0.05) is denoted similarly to Table 4.

MOoE); (b) domain robustness models (T5S-DANN
and T5-IRM) and (c) example-based adaptation
(PADA). We also report whether the improvement
of Hyper-PADA over the simpler HN-based mod-
els, Hyper-DN and Hyper-DREF, is significant.

Our results clearly demonstrate the superiority
of Hyper-PADA and the simpler HN-based mod-
els. Specifically, Hyper-PADA outperforms all
baseline models (i.e. models that do not involve
hypernetwork modeling, denoted bellow as non-
HN models) in 11 of 12 CLCD settings, in 8 of
12 CD sentiment settings, and in all 5 CD MNLI
settings, with an average improvement of 2.7%,
4.4% and 3.4% over the best performing baseline
in each of the settings, respectively. Another im-
pressive result is the gap between Hyper-PADA
and the T5-NoDA model, which does not perform
adaptation: Hyper-PADA outperforms this model
by 9.5%, 8.4% and 14.8% in CLCD and CD sen-
timent classification and CD MNLI, respectively.

Hyper-DN and Hyper-DRF are also superior to
all non-HN models across settings (Hyper-DRF in
10 CLCD sentiment settings, in 7 CD sentiment
settings and in 2 CD MNLI settings, as well as on
average in all three tasks; Hyper-DN in 8 CLCD
sentiment settings, in 8 CD sentiment settings, and



in 2 CD MNLI settings, as well as on average in all
three tasks). It is also interesting to note that the
best performing baselines (non-HN models) are
different in the three tasks: While T5-MoE (group
(a) of domain expert baselines) and T5-DANN
(group (b) of domain robustness baselines) are
strong in CLCD sentiment classification, PADA
(group (c) of example-based adaptation baselines)
is the strongest baseline for CD MNLI (in CD sen-
timent classification the average performance of
all baselines is within a 1% regime). This ob-
servation is related to another finding: Using the
DRF-signature as a prompt in order to improve
the example representation is more effective in CD
MNLI (which is indicated both by the strong per-
formance of PADA and the 3.1 F1 gap between
Hyper-PADA and Hyper-DRF) than in CLCD and
CD sentiment classification (which is indicated
both by the weaker PADA performance and by
the 0.6% (CLCD) and 1% (CD) accuracy gaps be-
tween Hyper-PADA and Hyper-DRF).

These findings support our modeling consider-
ations: (1) integrating HNs into OOD generaliza-
tion modeling (as the HN-based models strongly
outperform the baselines); and (2) integrating
DRF signature learning into the modeling frame-
work, both as input to the HN (Hyper-DRF and
Hyper-PADA) and as means of improving exam-
ple representation (Hyper-PADA).

Ablation Analysis To demonstrate the impact of
example-based classifier parametrization, Figure
4 plots the diversity of the example-based clas-
sifier weights as generated by Hyper-PADA vs.
the improvement of Hyper-PADA over PADA in
the CLCD sentiment classification settings.® We
choose to compare these models because both of
them use the self-generated signature for improved
example representation, but only Hyper-PADA
uses it for classifier parametrization. The rela-
tively high correlations between the two measures
is an encouraging indication, suggesting the po-
tential importance of example-based parametriza-
tion for improved task performance.

6 Discussion

We presented a Hypernetwork-based framework
for example-based domain adaptation, designed
for multi-source adaptation to unseen domains.

SFor diversity we compute the standard deviation of each
classifier weight coordinate, and average the resulting values.
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Figure 4: Correlation between the diversity of
the example-based classifier weights generated by
Hyper-PADA, and the improvement of this model
over PADA in CLCD sentiment classification. The
Spearman Correlation is 0.475. For CD senti-
ment classification, the corresponding numbers
are 0.539 and 0.175, for Pearson and Spearman
correlations respectively (not shown in the graph).

Our framework provides several novelties: (a) the
application of hypernetworks to domain adapta-
tion in NLP; (b) the application of hypernetworks
in example-based manner (which is novel at least
in NLP, to the best of our knowledge); (c) the gen-
eration of example-based classifier weights, based
on a learned signature which embeds the input ex-
ample in the semantic space spanned by the source
domains; and (d) the integration of all the above
with an example representation mechanism that is
based on the learned signature. While the idea of
DRF signatures and their use for example repre-
sentation in example-based adaptation is borrowed
from Ben-David et al. (2021), the above novelties
are unique contributions of this work. Our exten-
sive experiments, with 2 tasks, 4 languages and
8 domains, for a total of 29 adaptation settings,
clearly demonstrate the superiority of our frame-
work over a range of previous approaches, and the
positive impact of each of our modeling decisions.

In future work we would like to apply our
framework to additional tasks. including sequence
tagging and generation tasks, Ultimately, our goal
is to shape our methodology to the level that NLP
technology becomes available to as many textual
domains as possible, with minimum data annota-
tion and collection efforts.
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