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Abstract

Unsupervised domain adaptation is often addressed by
learning a joint representation of labeled samples from a
source domain and unlabeled samples from a target do-
main. Unfortunately, hard sharing of representation may
hurt adaptation because of negative transfer, where fea-
tures that are useful for source domains are learned even
if they hurt inference on the target domain. Here, we pro-
pose an alternative, soft sharing scheme. We train separate
but weakly-coupled models for the source and the target
data, while encouraging their predictions to agree. Train-
ing the two coupled models jointly effectively exploits the
distribution over unlabeled target data and achieves high
accuracy on the target. Specifically, we show analytically
and empirically that the decision boundaries of the target
model converge to low-density "valleys” of the target distri-
bution. We evaluate our approach on four multi-source do-
main adaptation (MSDA) benchmarks, digits, amazon text
reviews, Office-Caltech and images (DomainNet). We find
that it consistently outperforms current MSDA SoTA, some-
times by a very large margin.

1. Introduction

Multi-source domain adaptation (MSDA) is a fundamen-
tal problem in ML with applications to vision [24]], audio
[20] and text [27]]. In unsupervised MSDA, labeled sam-
ples are given from multiple source domains and we wish to
make predictions on a target domain, from which only unla-
beled samples are available [40]. For example, images may
be taken under several known lighting conditions, medical
data may be collected using different versions of a sensor
and product reviews may be collected for different prod-
ucts. In all these cases, we wish to learn from all source
domains.

The most widely used approaches to DA, learn a single
model from source and target data, see review by [38]]. The
idea is that both labeled source samples and unlabeled tar-
get samples would steer the shared representation towards
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Figure 1. MUST weak coupling. (a) Mainstream DA approaches
use joint representation of the source and the target domain. The
feature extractor is trained to minimize a discrepancy loss (domain
adversarial loss or other distance metrics between source and tar-
get distribution). The classifier is trained to classify samples from
the joint representation using source domain labels. (b) MUST
trained the teacher network (blue) on the source domains and the
student network (green) on the target domain. Instead of enforcing
joint representation, each network uses a different feature space.
The models are coupled through their predictions: the student uses
the predictions of the teacher as pseudo-labels and the teacher uses
the predictions of the student as an extra regularization.

features that are beneficial to all domains. Unfortunately,
hard sharing of representations often suffer from negative
transfer [23, 28,132, 136]. Features that are useful for source
domain are emphasized over those useful for the target, and
inference on the target data is harmed.

In this paper, we propose an alternative to hard sharing of
representations and describe a soft-sharing scheme. Figure
1 illustrates this learning setup and the architecture which
we name MUST, for MUlti-Source Shared Training. We
train separate models for source data and target data while
encouraging agreement across their predictions rather than
their representations. Namely, instead of constraining all
models to use the same feature representation, this approach
encourages them to make similar predictions on the target
domain.
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Figure 2. Decision boundaries of source-only model and MUST.
Each colored line corresponds to a different initialization. Blue:
positive source samples. Red: negative source samples. Gray: un-
labeled target samples. The source-only model is trained only on
source samples; it classifies perfectly the source data but ignores
the target data. The MUST teacher learns to classify the source
data and at the same time avoids dense areas of the target distribu-
tion as analyzed in lemma[&1]

The key idea in MUST is to use the target data in super-
vised training, by learning to generate pseudo-labels that
agree with the target distribution. The target distribution,
although unlabeled, contains valuable information that
can be used for classification. Specifically, if the target data
is clustered, samples within a cluster often share the same
label. As a result, a classifier that separates the data cor-
rectly would have its decision boundaries lie in low den-
sity regions. This property is known as the clustering as-
sumption and it is widely used in semi-supervised methods
[35 19, 131]. We find that the weak coupling employed by
MUST allows it to exploits target information. We analyze
this weak coupling theoretically and empirically in section
[ and find that the decision boundaries of the student con-
verge to low-density “’valleys” of the target distribution (see
Figure2).

MUST can be viewed as a variant of teacher-student (TS)
approaches [27, 13, 21}, 20]. There, a student network is
trained on target pseudo-labels, which are generated by a
teacher network trained on the source. Unlike current TS, in
our weakly-coupled version, the teacher and the student net-
works are trained jointly. Also unlike TS, in our approach,
the teacher network is tuned such that its predictions on tar-
get data are consistent with those of the student network.

This paper makes the following novel contributions. (1)
We describe a new training procedure for multi-source DA.
(2) We analyze the coupled dynamics of the student and
teacher models in our approach, showing empirically and
analytically that it tends to converge to the low-density ar-
eas of the target distribution. (3) New SoTA on three MSDA
classification benchmarks: Digits (MNIST-like), sentiment

analysis (Amazon data) and visual object recognition (Do-
mainNet). Compared with an estimated upper bound on
classification error, MUST sometimes achieves dramatic
reduction in average error rate, as high as 76% on digits
dataset.

2. Related work

Single-source domain adaptation (SSDA) has been ex-
tensively studied. See [38} [10] recent literature surveys.
SSDA can directly apply to multi-source DA, by combin-
ing all the source domains to one domain. However, this
method leads to poor adaptation performance [24].

Multi-source DA: Compared to the vast amount of
research done on single-source DA, multi-source DA
(MSDA) is less explored. The theory of MSDA was studied
by [1]. They suggested using divergence between source
and target domains to find a theoretical bound for gener-
alization error. [18] introduces a new divergence measure
and [19] suggested presenting the target hypotheses as a
weighted combination of source hypotheses. Inspired by
DANN [7], an SSDA approach, [44] proposed multi-source
domain adversarial networks (MDAN), an adversarial loss
to find a representation indistinguishable between all source
domains and the target domain and, at the same time, in-
formative enough for the given task. [26] uses adversar-
ial loss as well as ensemble of encoder and decoder net-
works to learn a shared feature space to the source and tar-
get domains. [39] adapts domain adversarial loss to trans-
formers. [14] uses different batch norm per domain (ad-
aBN), letting the model learn different batch statistics in
different domains. Motivated by [19], Deep Cocktail Net-
works (DCTN) [40] used adversarial learning to minimize
the discrepancy between the target and each of the mul-
tiple source domains. Multi-Domain Matching Network
(MDMN) [13] increases domain similarities not only be-
tween the source and target domains but also within the
source domain themselves based on a Wasserstein-like mea-
sure. Moment matching (M3SDA) [24] minimizes the first
order moment-related distance between all source and target
domains. Domain aggregation network (DARN) [37] learns
to weight the source domains to find the optimal balance
between increasing the effective sample size and excluding
irrelevant data. Learn to combine (LtC) [34] uses a knowl-
edge graph on the prototypes of various domains to realize
the information propagation among semantically adjacent
representations. Recently, model-agnostic approaches sug-
gested to improve existing MSDA approaches. [12] uses
meta-learning and [42] uses a curriculum agent to choose
source training samples. Those approaches can be com-
bined with any model to improve their accuracy. The cur-
rent paper proposes a new adaptation algorithm. Thus, we
compare our method with adaptation approaches.

Reverse Validation: Unlike supervised learning, hy-



perparameters in DA should not be tuned using cross val-
idation, and for two reasons. First, no labels are available
for the target domain. Second, using cross-validation on
source data is not a good estimator of model performance
on target data. To address this issue, [45] proposed using
reverse validation (RV) for tuning hyperparameter without
target labels. RV is estimated by first splitting the source
(labeled) and target (unlabeled) data into training and vali-
dation sets. The source training set is used to train a clas-
sifier with any UDA method, and infer pseudo-labels over
the target validation set. Those pseudo-labels are then used
to train a second classifier. That second classifier uses the
same UDA method, but with the pseudo-labeled target data
as the source domain and the source data, without labels, as
the target domain. The classifier is evaluated on the source
validation data and its loss is the RV. The parameters that
gain the lowest RV are selected. [38] pointed out that many
studies incorrectly use target labels for hyperparameter tun-
ing, breaking the very definition of UDA. Results of these
studies can be interpreted as upper bounds on method per-
formance perform. We stress that here, we used reverse val-
idation for parameter tuning, adhering to a more realistic
training scenario. For comparison, we also provide results
achieved using a non-RV evaluation protocol.

Negative transfer: Although negative transfer does not
rigorously defined, a widely accepted description of nega-
tive transfer is stated as “transferring knowledge from the
source can have a negative impact on the target learner”
[41]]. [36] suggested ways to measure negative transfer, but
it focuses on cases where there is at least a small amount of
target label data. In section [5] we design an experiment to
measure the way different methods deal with negative trans-
fer.

Teacher-student approaches: In teacher-student (TS)
approaches a teacher network is trained on the source do-
main. Then, a student network is trained on the target do-
main, using the predictions of the teacher networks as la-
bels. Several authors showed that TS architectures are ef-
fective for DA. [3]] uses pairs of samples from source and
target domains, which are frame-by-frame synchronized for
speech recognition tasks. The teacher is a trained model
on the source domain, and remains constant. In the train-
ing process, the teacher and student make predictions on
pairs of related source and target samples. The student is
trained to minimize the KL divergence between the out-
puts. [21] uses the same idea as [3], but adds to the stu-
dent an adversarial objective that encourages it to learn
condition-invariant features. [20]] also followed [3], but re-
places the teacher and student models with an attention-
based encoder-decoder. [27] uses one teacher per source do-
main. Teacher models are first trained in a supervised man-
ner, then remain fixed during adaptation. The student model
is then trained to imitate a weighted sum of the teacher

predictions. [3] trains a single model (the student) on the
source domain, while the weights of the teacher network are
set as an exponential moving average of student weights. In
contrast with previous TS approaches, we train the teacher
and the student jointly, making the teacher take into account
the (unlabeled) distribution of target samples p(z). Section
[6] shows that teacher pseudo-labels on target data are highly
variable during learning, so freezing them according to one
epoch (the last) leads to poor student performance. Our ap-
proach addresses this issue by training both networks itera-
tively, so the student network is trained on different predic-
tions of the teacher each iteration. In addition, the weak-
coupling makes the predictions of the teacher more consis-
tent from one iteration to another.

3. Our approach

Our key idea is to train a network on the target data, and
iteratively discovers target pseudo-labels that are consistent
with the target distribution. Even though the target domain
is unlabeled, it does contain useful information, which lies
in the distribution of the data p(z). This is because when
data is clustered, samples within a cluster tend to share the
same label. As a result, a classifier that separates the data
correctly would have its decision boundaries located be-
tween the high-density clusters and passing in regions with
low sample density. This property is known as the clus-
tering assumption and it is widely used in semi-supervised
methods [35, 9} 131].

Building on these ideas, MUST trains two separate mod-
els. One for source domains which learns from labeled data
and another for the target domain which exploits the unla-
beled distribution. The models are weakly couples through
their predictions, so MUST converge to solutions that fit
both the source domains labels and the target distribution.
In section [] we analyze the coupling effect on the target
classifier, showing its decision boundaries converge to low-
density valleys” of the target distribution.

We now formally define the learning setup and our
approach. Let {S*}X, be a collection of source do-
mains, where the k" domain has N labeled samples
{(«¥ y#)}N% . Similarly, T is a target domain, with Np
unlabeled samples {z;}2Y%,. The multi-source DA problem
aims to find a hypothesis f, which minimizes the test target
error ¢(f) = Eonrlpr(ylz) — plylz, f)], where pr(yl2)
denotes the conditional distribution of the target domain
and p(y|z, f) denotes the conditional distribution of the pre-
dicted label.

Our algorithm trains two networks. The teacher network
is trained on labeled source samples and the student net-
work is trained on target samples, using the predictions of
the teacher as pseudo labels. These two networks are trained
jointly, using two losses:

(1) The teacher learns to classify. Train a teacher clas-



Algorithm 1 MUST training procedure

1: Input: Source domains samples {{(z¥, y¥)} Ve 1K |

target domain samples {z; f\’: 1 and a hyperparameter \
2: fort = 1..steps do
src = random(K) //Choose random source
Xore, Yare=sample-batch({ (x57¢, y57¢}) Nere)
Calculate Lgoqrce using (I))
X4t = sample-batch({z; } 7
Calculate Ly gent using
Update ¢ to minimize L sty gent
Calculate Licqener using (3)
10:  Update 6 to minimize Lieqcher
11: end for
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where [; is a loss functions.

(2) The teacher trains the student: Use fj to give soft
labels to the target domain and use them to train the student
fo. For that, we minimize
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where [5 is a loss functions. Lgsyqen: 1S @ function of both
the student network f, and the teacher network fg. We used
its derivatives w.r.t. the student parameter ¢ to train the stu-
dent network.

(3) Combining the losses: We linearly combine the
teacher loss on the source domain and the student loss on
the target domain to get the teacher loss. This time, Lty dent
derivatives calculated w.r.t. the teacher parameters 6. This
can be viewed as a regularizer of the student network on the
teacher, while training the teacher on the source domain.
The total teacher loss becomes

Lteacher = Esource +A- Estudem‘,a (3)

where ) is a hyper parameter selected using reverse valida-
tion [45]. The training process is summarized in algorithm

4. Analysis

In this section we analyze MUST solutions both analyt-
ically and experimentally. We show that MUST converges
to solutions with a large margin on the target data.

4.1. Theoretical analysis

The objective of MUST includes a coupling term (2) that
encourages the predictions of the teacher network to be sim-
ilar to those of the student network (in the target data). We
now analyze how this weak coupling affects the solutions
of the two models.

As discussed above, the clustering assumption suggests
that samples in the same cluster tend to have the same label.
This suggests that decision boundaries should pass in low
density areas of the target distribution.

We now analyze the solutions that MUST converges to.

Lemma 4.1. Let the teacher network fy be a binary
classifier parametrized by 0, whose last layer is a sig-
moid fo = o(go(x)). Let fy be the student network. If
VzeT: |6g57(§2)| < Aand |g9(z)| = p > 0 than using
cross entropy for the teacher loss and using Lo for the
student loss, the gradient update bounds by:

oL eacher 9% ode
O R )
A

+2AE. 7 [(fo(2) — f¢(z))]€7~ “)

Proof.

Licacher = E(z,y)NS [ylogfg (.I‘) + (1 - y)lOg(l - f9 (x))]
+ ABz~rll2(fo(2), fo(2))]. (5)

The gradient decent update rule for the teacher is:

OL
git+l = gt 4y Zteacher 6
g (6)
where 7 is the learning rate.
For any 6, the loss derivative is:
8Lteacher afe (LL') % (37)
Zfteacher _ @ N 1—qy)—209 "7
o9~ Pewrsbiy iy + 00T gt
of
Bt [2(fo(2) = [o(2) Zg () D)

Now, using Vz € T : |ag§7éz)| < Aand |gg(z)| = p >0
gives:
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Since 2 is a constant it follows that:
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This result gives an upper bound for changes in 6. The
teacher converges when % vanishes. If the teacher
is in a locz(lalf minimum with arjf:spect to the source data

[¢] 0

B sy s + (1= ) 25D is 0. Ear(fo(2) —
£5(2))] 2 decreases to zero in one of the following two op-
tions: (1) Fitting the student to the teacher predictions on
the target data perfectly. This can easily happen when the
source and target data have many common features, but for
large domain shift this may not be the case. (2) Increas-
ing p. |gg(z)| is the distance from the decision boundary,
so increasing p is achieved by moving the decision bound-
aries away from the target samples. This way the classifier
uses a larger margin for samples that are far from the source
domain.

4.2. Empirical analysis

To get a better understanding of the classifier properties
learned using MUST, we used an illustrative example. We
generated 2D data from 2 classes and trained a 2-layer fully-
connected neural network to perform binary classification.

Figure [2| compares source-only model, which is a model
that trained only on the source domain and MUST teacher.
The decision boundaries visualized for 20 different initial-
izations. The decision boundaries of the MUST teacher
avoid highly-dense regions of the target distribution (grey
dots), as analyzed in lemma4.1

To further assess if this effect also occurs in real datasets,
we trained a MUST model with the DomainNet dataset
[24]. We estimated the distance of each sample from the
decision boundary. Specifically, we perturbed each sam-
ple by epsilon in the direction of its adversarial perturbation
and counted how many samples changed their labels as a
function of epsilon. Figure [3] shows that for the source-
only model, many more samples are close to the decision
boundary, compared with the MUST model. This suggests
that MUST decision boundaries are more distant on average
from target samples, and is consistent with the hypothesis
that they traverse low-density regions of the target density.

5. Experimental evaluation

We evaluate MUST using three real-world datasets.
First, in a task of sentiment analysis by using the
Amazon product reviews benchmark [2]. Second, in

104
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Figure 3. The number of target samples within a specific distance
from decision boundary. For each target sample, we move an ep-
silon step in direction of adversarial perturbation and count the
number of samples that change their labels. Calculated on Do-
mainNet.

a task of image classification using four digit recogni-
tion datasets (MNIST, MNIST-M, SVHN and SynthDig-
its) and DomainNet dataset [24]. Code is available at
https://github.com/amosy3/MUST.

Implementation details: We use cross entropy as the
loss function of Eq. (I). In Eq. (2), training with a cross
entropy loss was unstable, because the loss gradients are
calculated on both the estimated probability distribution and
the true distribution. We found the training to be more stable
using a Lo loss in Eq. ().

We followed [14] and use different batch norm layers for
each domain. This way, the model can effectively use the
data from all domains using one model. We also followed
[S] and use confidence thresholding, to stabilize the training
process. For each target sample, if the teacher softmax layer
maximum is lower than the confidence threshold (denoted
as Cp), the student will not use that sample for training.

5.1. Sentiment analysis

Sentiment analysis aims to decide if the sentiment of a
given text is positive or negative. In the MSDA setup, do-
mains are text from a different distribution. For the Amazon
reviews dataset different domains are different products.

The data: The Amazon reviews dataset contains 27677
reviews on four kinds of products: Books, DVDs, Electron-
ics and Kitchen appliances. Each review is labeled as pos-
itive or negative. For a fair comparison, we followed the
experimental setup used by [44]] with the code provided by
the authors. We conduct four experiments: for each experi-
ment, we pick one product as the target domain and use the
rest as source domains.

Experimental setup: We used the same basic network
structure as [44]. Since MUST uses a different batch norm



Method Books | DVD | Elect | Kitn || Avg.
KD [25] 79.2 | 80.9 | 85.8 |87.383.3
mSDA [4] 77.0 | 78.6 | 82.0 | 84.3 || 80.5
DANN [7] 79.1 | 80.6 | 85.3 |85.6 | 82.6
SE [5] 77.0 | 79.1 | 83.7 | 84.9 | 81.2
KA [27] 80.1 | 80.9 | 83.1 |86.5 || 82.5
M3SDA [24] 79.4 | 80.8 | 85.5|86.5]| 83.1
MDAN [44] 80.0 | 81.7 | 84.8 | 86.8 || 83.3
MDMN [13] 80.1 | 81.6 | 85.6 | 87.1 | 83.6
DARN [37] 79.9 | 81.6 | 85.8 |87.2 | 83.6
MUST (ours) 80.5 | 81.9 | 86.3 | 87.9 || 84.2
Labeled target 84.2 | 83.8 | 86.4 | 88.7 |/ 85.8
Error reduction (vs Tgt) | 14% | 14% | 83% |46% || 27%

Table 1. Accuracy for sentiment-analysis classification

per each domain, we added a batch-norm layer to the input
layer. We used SGD optimizer with a learning rate of 0.001,
a momentum of 0.9 for training and experimented with sev-
eral hyperparameter configurations (A = 0.25,0.5,1.0 and
Cyn = 0.6, 0.9), choosing between them using reverse vali-
dation [45]).

Compared approaches:

Since our approach uses pseudo labels for the target
domain, it may be considered as a kind of knowledge-
distillation (KD) technique [25]. Unlike KD, we train the
teacher and the student iteratively, so in each iteration, the
student is trained on different predictions of the teacher, and
the teacher is also influenced by the predictions of the stu-
dent. This important difference leads the decision bound-
aries of the teacher to lie in low density regions. To show
that difference empirically, we compare MUST with KD. In
addition, we compare our results with the state-of-the-art re-
sults reported in [27] and [37]: (1) mSDA: [4] uses stacked
denoising autoencoder to learn new higher-level represen-
tations. (2) DANN: [7] uses adversarial loss to create a
representation that a domain classifier is unable to classify
from which domain the feature representation originated.
DANN is a single to single DA method and can not be
directly applied in a multiple source domains setting. For
the multi-source setup [37] merged all the source domains
and use them as one large source domain. (3) Knowledge
Adaptation (KA): [27] uses multiple teachers, one for each
domain and another general teacher that trained on all the
sources combined, to train a student to imitate the weighted
sum of the teacher’s predictions. (4) Moment matching
(M3SDA): [24]. (5) Adversarial MSDA (MDAN): [44].
(6) Multi-Domain Matching Network (MDMN): [13]. (7)
Domain aggregation network (DARN): [37]. (8) Target:
a baseline model that trained on the target labels.

Results: The accuracy of the various methods is sum-
marized in Table[I] Clearly, MUST outperforms all other
methods.

Method MNIST |[M-M | SVHN | SYN. || Avg.
KD [25] 97.7 |74.1 | 81.1 | 92.6 || 86.4
DANN [7] 96.4 | 60.1 | 70.2 | 83.8 ||77.6
SE [5] 98.6 | 739 | 78.1 | 95.1 || 86.4
M3SDA [24) 97.0 | 650 | 71.7 | 80.1 || 78.4
MDAN [44] 97.1 |64.1| 77.7 | 855 | 81.1
MDMN [13] 972 | 643 | 764 | 85.8 || 80.9
LtC [34] 983 |63.1| 794 | 925 | 83.3
DARN [37] 98.1 |67.1| 81.6 | 86.8 || 83.4
MUST (ours) 989 |83.8| 86.0 | 96.1 || 91.2
Labeled target 99.0 |94.7| 87.6 | 97.0 || 94.6
Error reduction (vs Tgt)| 77% | 60% | 73% | 91% || 76%

Table 2. Accuracy for Digit recognition

5.2. Image classification

In the task of image classification, we used the digit
recognition datasets and DomainNet dataset [24].

Experimental setup: For image classification, we
trained a ResNet-152 with SGD using a learning rate of
0.001 and a momentum of 0.9. We grid-searched over
hyperparameter configurations (A = 0.25,0.5 and Cy, =
0.25,0.5,0.95) and selected the best configuration based on
the average accuracy of the student on the source domain,
which is similar to reverse validation.

Digit recognition

The data: The digits dataset is a union of several datasets:
(1) MNIST [[11]: low resolution black and white images
of handwritten digits. (2) MNIST-M (M-M) [6]: consists
of MNIST digits blended with random color patches. (3)
SVHN [22]: contains low-resolution images of digits from
google street view home number. (4) SynthDigits [6]: syn-
thetic SVHN-like dataset digits. Those datasets are com-
bined into one dataset where each dataset is considered as a
different domain. It is worth noting that there is also a fifth
dataset name USPS, which contains low-resolution MNIST-
like images. Since this dataset contains a small number of
samples, some protocols discard it. We followed the proto-
col used by [37] and [44].

Compared approaches: We compare our results with
the current state-of-the-art results as reported in [37]. In ad-
dition, we compared with LtC [34] using the authors official
code.

Results: As summarized in Table MUST outper-
forms current state-of-the-art MSDA methods by a signif-
icant margin. The largest improvement is the adaptation to
MNIST-M dataset and SYNTH dataset. This makes sense
due to the fact that MUST focus on common features be-
tween the sources and the target. MNIST-M is based on
MNIST and SYNTH is based on SVHN, so those datasets
have more common features than typical datasets, which
leads to big improvements.



Office-Caltech

The data: The Office-Caltech [8] dataset is extended from
the standard Office31 [29]] dataset. It consists of the same 10
object categories from 4 different domains: Amazon, Cal-
tech, DSLR, and Webcam.

Compared approaches: We compare our results with
the current state-of-the-art results as reported in [24].

Results: As summarized in Table[3] MUST outperforms
current state-of-the-art MSDA methods in 3 out of 4 tasks.

METHOD WEBCAM | DSLR | CALTECH | AMAZON | AVG.
DAN [15] 99.5 99.1 89.2 91.6 [94.8
DCTN [40] 99.4 199.0| 90.2 92.7 1953
JAN [17] 99.4 1994 | 91.2 91.8 1955
MCD [30] 99.5 99.1 91.5 92.1 ]95.6

M3SDA [24] 99.5 99.2 92.2 94.5 196.4
MUST (OURS)| 99.7 99.0 93.6 95.3 [96.9
(OURS) +0.05 [£0.4]| +0.2 + 0.6
Table 3. Classification accuracy on Office-Caltech. Values are av-
erages over 5 seeds; = denotes STD over 5 seeds.

DomainNet

We next evaluate MUST in a problem of adaptation for vi-
sual object recognition.

The data: DomainNet [24] is a recent challenging
dataset designed to evaluate multi-source domain adapta-
tion. It is by far the largest DA dataset, containing six
aligned domains (clipart, infograph, painting, quickdraw,
real, and sketch) and about 6 million images distributed
among 345 categories. This dataset is far more challenging
than previous digit-based datasets. As shown by [24], even
state-of-the-art methods fail to adapt well across domains in
this dataset.

Compared approaches: We compared our results to a
set of methods as reported by [24]. In addition, we com-
pared with LtC [34] using the authors official code. For
SSDA methods, all samples from the source domains are
aggregated as if coming from a single source domain. The
model is trained on the aggregated dataset and evaluated on
the target domain.

We compared MUST to several SSDA approaches: (0)
No adaptation Using only source domain samples. (1)
DAN [15]] applied MMD to layers embedded in a reproduc-
ing kernel Hilbert space, matching higher order statistics of
the two distributions. (2) RTN [16]] uses residual layers to
bridge over components that do not transfer well between
domains. (3) JAN [17] aligns the joint distributions of mul-
tiple layers across domains based on a joint maximum mean
discrepancy. (4) DANN [7]. (5) ADDA [33]] combines dis-
criminative modeling and a GAN loss. (6) SE [5]. (7) MCD
[3Q] finding two classifiers that maximize the discrepancy

Models Clip | Info | Paint | Quick | Real | Skt || Avg
Source Only |47.6(13.0] 38.1 | 13.3 [51.9]33.7|32.9
KD [25] 55.6(13.8(36.2 | 13.7 |43.9|44.5|34.6
DAN [15] 45.4112.8136.2 | 153 |48.6|34.01 32.1
RTN [16] 442112.6|353 | 14.6 |48.4|31.7| 31.1
JAN [17] 49.0|11.1| 354 | 12.1 |45.8(32.3(/29.6
DANN [7] 45.5(13.1137.0 | 13.2 |48.9|31.8]32.6
ADDA [33] |47.5|11.4]36.7 | 14.7 |49.1|33.5]32.2
SE [5] 247139 | 127 | 7.1 |22.8] 9.1 ||16.1
MCD [30] 54.3122.11457| 7.6 |58.4]43.5] 38.5
DCTN [40] |48.6(23.5|488 | 7.2 |53.5|47.3|38.2
MB3SDA [24] |58.6(26.0| 52.3 | 6.3 |62.7|49.5|/42.5
Multi- | DARN [37] |28.5| 8.6 | 294 | 32 [39.2(20.3|21.5
Source | LtC [34] 37474 19.7| 6.7 [20.8(30.7|20.5
MUST (ours) | 60.8 | 20.5| 48.2 | 12.2 | 65.1|49.8 || 42.8

\ [Target [71.6]36.7] 68.6 | 69.6 [81.8]65.8][65.7]
Table 4. Image classification accuracy on DomainNet

Single-
Source

on the target sample and then generate features that mini-
mize this discrepancy. In addition to SSDA baselines, there
are MSDA baselines: (8) DCTN [40]. (9) M3SDA —
[24]. (10) DARN: [37].

Results: As summarized in Table f] MUST outper-
forms current state-of-the-art MSDA methods in 4 out of
6 tasks. As was shown by [24], MSDA methods are consis-
tently better than SSDA baselines. The only exception was
Quickdraw. No adaptation baselines score is 13.3% while
some SSDA baselines improve this score up to 15.3%. Sur-
prisingly the MSDA methods achieve a lower score than
no adaptation. This indicates that a negative transfer oc-
curred when applying MSDA methods. MUST reduces the
negative transfer and compare to other MSDA methods we
almost doubled the accuracy in the Quickdraw task up to
12.2%, getting much closer to the no adaptation baselines.
This is still below some SSDA baseline. That demonstrates
the difficulty of avoiding negative transfer in the multi-
source setting and shows that there is room for further im-
provement.

5.3. Negative transfer

Learning a joint representation of source and target do-
mains may transfer knowledge from the source that can
have a negative impact on the target classifier [41]. In
MUST, the teacher is trained on the source domains, and
the student is trained on the target domain. We expect this
separation to help reduce negative transfer. Since the stu-
dent network does not train on source samples, it will not
learn source features that do not appear in the target. To
study this effect, we need a way to measure negative trans-
fer. [36] suggested ways to measure negative transfer, but
it focuses on cases where there is at least a small amount
of target label data. To overcome this, we created an ex-
periment that helps to estimate the negative transfer on a
real-world dataset.

The data: We created a dataset where some features are



Source

Target

Figure 4. Samples from the negative-transfer experiment. Source
domain samples were obtained by modifying MNIST: A small
patch in the upper left of each image was set to white. The size
of the patch is the n X n pixels where n is the image label. The
target domain is the original MNIST dataset.

Method Accuracy on target
No adaptation 223
DANN [7] 11.3
SE [5] 12.4
MUST (ours) 35.6

Table 5. Accuracy on the negative-transfer dataset of Sec.

strongly correlated with the label in the source domain, but
those features are absent in the target data. This allows us
to quantify the negative transfer by measuring the decline in
performance between the source and the target domain.
The data is illustrated in Figure 4] We used MNIST as
the target domain. For the source domain, we created a vari-
ant of MNIST as follows: We modified a patch in the upper
left part of each image, by setting its values to 255. The
size of the patch was determined by the label of the image,
specifically, it was n x n pixels where n is the image label.
Compared approaches: We compare MUST to 3
baslines: (1) No adaptation using only source domain sam-
ples. (2) DANN [7]]. Since the dataset is SSDA we com-
pared our approach to DANN which is the SSDA version of
MDMN [13], MDAN [44] and DARN [37]. (3) SE [5]].
Results: As shown in Table [5} MUST out-performs
other DA methods, and is the only one that improves the
performance comparing to the no adaptation baseline.

6. Additional analysis
6.1. Analysis of optimization dynamics

A closer look into the training process can help us un-
derstand the dynamic interplay of the two networks. See
section C in the supplementary material for a detailed anal-
ysis.

6.2. Ablation experiments

We quantify the contribution of various components of
MUST. (1) Only-BN: We trained a network without the
weak coupling using per-domain batch-norm layers. (2)
Teacher: The teacher model trained using MUST. (3)

MUST: The full approach described in this paper, use the
student as the final classifier. Table [6] summarizes the re-
sults for the sentiment analysis experiment, Table[7]for digit
recognition and Table [§] for DomainNet.

Method Books | DVD | Elect | Kitn || Avg.
Only-BN | 755 | 782 | 823 | 842 || 80.1
Teacher 76.0 | 79.1 | 82.6 | 84.7 || 80.6
MUST 80.5 | 81.9 | 86.3 | 87.9 || 84.2

Table 6. MUST ablation on Amazon product reviews

Method MNIST | M-M | SVHN | SYN || Avg.

Only-BN 98.2 72.6 76.3 945 || 85.4

Teacher 98.9 83.2 86.0 95.9 || 91.0

MUST 98.9 83.8 86.0 96.1 || 91.2
Table 7. MUST ablation on digit recognition

CLIP- | INFO- |PAINT |QUICK- |REAL|SKETCH || AVG.
MODELS | ART |GRAPH DRAW
ONLY-BN| 47.9 | 13.5 | 39.9 9.3 559 | 36.6 |/33.8
TEACHER | 58.9 | 8.1 | 47.9 3.3 65.2 | 49.3 ||38.8
MUST 60.8 | 20.5 | 48.2 | 12.2 | 65.1 | 49.8 | 42.8
Table 8. MUST ablation on DomainNet

In most cases, the teacher improves the Only-BN score,
demonstrating the influence of the student feedback on the
teacher. In addition, the student is consistently better than
the teacher, indicating the reduction of negative transfer.
This effect is particularly noticeable on Quickdraw where
the negative transfer for all MSDA methods was shown in

section[3.21

7. Conclusion

This paper describes a new MSDA method. Separate
networks are trained while weakly coupling their predic-
tions. We showed that this weak coupling moves the de-
cision boundary to low-density regions in the target distri-
bution. An experiment designed to measure the effect of
negative transfer shows that its effect is reduced using our
approach. We hope this experiment will encourage the DA
community to measure negative transfer of new methods.
Evaluated on three MSDA benchmarks, we find that MUST
achieves new SoTA results.
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Supplementary Material

A. Negative transfer decision boundaries visu-
alization

To demonstrate the effectiveness of MUST to reduce
negative transfer, we generate an example such that the
source data can be perfectly classified by either of the two
features. The target data is agnostic to one of the features
and can be perfectly classified using the other. Figure [3]
shows the decision boundaries of source-only model and
MUST for 20 initializations. Source-only model is trained
using only the source data. Its decision boundaries are a
linear combination of the two features, which heart the per-
formance on the target. MUST teacher successfully learns
to classify using the feature that is relevant to both source
and target domains.

Source only

e positive e negative unlabel target

Figure 5. Decision boundaries of source-only models and MUST
for 20 initializations. Blue: positive source samples. Red: nega-
tive source samples. Gray: unlabeled target samples. The source-
only model classifies perfectly the source data but uses the hori-
zontal feature that is not relevant to the target domain. The MUST
teacher learns to ignore the horizontal feature and avoiding nega-
tive transfer.

B. Regression experiment

The common MSDA banchmarks are for classification
task. We evaluated MUST also for regression, using Web-
CamT dataset for vehicle counting task. The dataset contain
cameras from different geographic locations and each cam-
era see an intersection or a road from different perspectives.
Each camera is consider as a domain.

The data: WebCamT is a public dataset for vehi-
cle counting from large-scale city camera videos, which
has low resolution (352 x 240), low frame rate (1
frame/second), and high occlusion. It has 60,000 frames an-
notated with vehicle bounding box and count, divided into
training set (42,200 frames) and testing set (17,800 frames).

Target camera | FCN (Zhang, 2017) | MUST (ours)

410 2.58 242

551 5.70 4.85

173 4.07 4.04

403 2.30 2.28

495 3.20 3.06

170 6.04 5.76

511 2.74 2.73

398 5.04 4.99
Avg. MAE 3.96 3.77

Table 9. MAE for vehicle counting

Experimental setup: We demonstrate the effectiveness
of MUST to count vehicles from an unlabeled target cam-
era by adapting from multiple labeled source cameras: we
select 8 cameras located in different intersections of the city
with different scenes, and each has more than 2,000 labeled
images for our evaluations. Among these 8 cameras, we
take one camera as the target camera, and use the other
7 cameras as sources. We calculated mean absolute error
(MAE) between true count and estimated count.

Compared approaches: We compare our method with
FCN [43], a basic network without domain adaptation.

Results: As shown in Table 0] MUST out-performs
FCN, in all experiments.

C. Analysis of optimization dynamics

A closer look into the training process can help us under-
stand the dynamic interplay of the two networks. A detailed
analysis

Figure [f] traces the target accuracy of the student and
teacher together with Licgceper and Lggydent during train-
ing. In addition, we plot the number of samples that cross
the confidence threshold and the reverse validation score.
Interestingly, learning follows through four phases.

A closer look into the training process can help us under-
stand the dynamic interplay of the two networks. Figure [6]
traces the target accuracy of the student and teacher together
with Licqeher and Lggygent during training. In addition, we
plot the number of samples that cross the confidence thresh-
old and the reverse validation score. Interestingly, learning
follows through four phases.

(1) Teacher learns, Iterations 1 — 1000: The teacher train
on the source domains. The predictions of the teacher on
the target domain are under the confidence threshold (C}p,),
so the student does not train (Lgzydgen: = 0), and the teacher
optimize only Loyrce-

(2) Sync, Iterations 1000 — 2000: The teacher confidence
on target samples grows and the student starts receiving
labels to train on (Lgtydent > 0).  Surprisingly, there
is no change in the student target accuracy, even though
the teacher provides the student with good quality pseudo-
labels to train on. There is a small drop in the teacher accu-
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Figure 6. The dynamics of teacher and student joint-learning.
(a) Target accuracy of the teacher (red) and the student (blue)
during training and the percent of samples that passed the confi-
dence threshold (green). (b) Loss functions values during training
Licacher (red), Lstudent (blue) and reverse validation loss (green).

racy. Since Ly dent also regularize the teacher, the teacher
now optimizes Licacher = Lsource + A+ Lstudent- Optimize
Lstudent bY the teacher create more consistent predictions,
so the student can fit them better.

(3) Student learns, Iterations 2000 — 2500: Student accu-
racy improves quickly on the target data. The reverse val-
idation loss decline, indicating that the student focuses on
features that are relevant to both the source and target data.
(4) Saturation, Iterations 2500 — 5000: Networks reach
saturation. The student accuracy is higher than the teacher,
indicating that the effect of negative transfer is reduced.



