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The quantum approximate optimization
algorithm (QAOA) is a leading iterative
variational quantum algorithm for heuris-
tically solving combinatorial optimization
problems. A large portion of the computa-
tional effort in QAOA is spent by the op-
timization steps, which require many exe-
cutions of the quantum circuit. Therefore,
there is active research focusing on find-
ing better initial circuit parameters, which
would reduce the number of required itera-
tions and hence the overall execution time.
While existing methods for parameter ini-
tialization have shown great success, they
often offer a single set of parameters for all
problem instances. We propose a practical
method that uses a simple, fully connected
neural network that leverages previous ex-
ecutions of QAOA to find better initial-
ization parameters tailored to a new given
problem instance. We benchmark state-
of-the-art initialization methods for solv-
ing the MaxCut problem of Erdős–Rényi
graphs using QAOA and show that our
method is consistently the fastest to con-
verge while also yielding the best final re-
sult. Furthermore, the parameters pre-
dicted by the neural network are shown to
match very well with the fully optimized
parameters, to the extent that no iterative
steps are required, thereby effectively re-
alizing an iterative-free QAOA scheme.
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1 Introduction

Quantum computers are currently found in
the so-called noisy intermediate-scale quantum
(NISQ) era, comprising a small number of qubits
and high error rates that accumulate rapidly with
the number of operations [1]. A popular family of
quantum algorithms in the NISQ era is the varia-
tional quantum algorithms (VQAs), which offer a
heuristic approach for solving optimization prob-
lems [2]. VQAs use relatively shallow quantum
circuits and are, therefore, more resilient to noise
compared to standard quantum algorithms [3].
They employ quantum circuits of parameterized
gates that are updated, by means of classical com-
putation, to reach an optimum of a predefined ob-
jective function [4]. The quantum approximate
optimization algorithm (QAOA) is a particular
VQA designed specifically to solve approximate
combinatorial optimization problems [5, 6, 7],
which are of high importance for various fields
in both industry and academia [8, 9].

In VQAs and QAQA in particular, each op-
timization step involves thousands of circuit ex-
ecutions, so reducing the number of optimiza-
tion steps is highly desirable. Choosing a proper
QAOA parameters can improve both the conver-
gence rate [10, 11] and the accuracy of the final
solution [5, 11]. Finding better initial parameters
for the QAOA circuit is thus a matter of active
research [7, 10, 11, 12, 13, 14, 15, 16].

Most initialization methods offer a single, com-
mon, set of parameters for all problem instances
[7, 12, 10, 14]. This is a pragmatic approach
and often very successful in reducing the num-
ber of required QAOA iterations. Nevertheless,
it inherently ignores important relations between
problem instances and their optimal parameters.
These relations, which are based on the infor-
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mation carried by the particular description of
each problem instance, can potentially be uti-
lized to save further iterations. Other methods
that manage to personalize the initial parame-
ters per problem instance [11, 15] show an im-
pressive improvement, exponentially better com-
pared to a random parameter initialization [11],
yet at a high cost of many additional quantum
circuit executions. These findings entail that us-
ing a different initialization per problem instance
is beneficial and motivate the exploration of more
cost-effective schemes for generating personalized
parameters for each problem instance.

The goal of this paper is to reduce the number
of required QAOA iterations without compromis-
ing algorithm performance and without invoking
any additional quantum circuit executions, by us-
ing better initialization parameters.

We propose a practical approach based on neu-
ral network (NN) that predicts appropriate ini-
tialization parameters for QAOA per problem in-
stance. The NN takes as input a predefined en-
coding of the problem instance and outputs the
corresponding QAOA parameters. To that end,
the NN is trained using past results of QAOA
optimizations as labeled data. We evaluate our
method on the standard MaxCut benchmark;
The method can be similarly applied to other
problems.

This study provides the following contribu-
tions: (a) it demonstrates that the QAOA’s vari-
ational parameters can be learned efficiently and
robustly by a simple NN for the MaxCut prob-
lem without any additional quantum computa-
tion; (b) the proposed learning scheme is empiri-
cally shown to outperform state-of-the-art QAOA
initialization methods in terms of the approxima-
tion ratio and convergence speed; (c) using the
proposed method may relinquish the need for any
further optimization of the quantum circuit alto-
gether, potentially saving many costly quantum
circuit executions; and (d) we show that these
advantages become more profound as the size of
the problem (the number of nodes in the graph)
increases.

The paper is structured as follows: Sec. 2 pro-
vides the relevant background. It describes the
QAOA algorithm, the MaxCut problem, and pre-
vious works on parameter initialization for the
QAOA circuit. Sec. 3 introduces our proposed
method. Sec. 4 benchmarks several initialization

techniques alongside our method and provides a
detailed comparison of their performances. Fi-
nally, we discuss the central advantages of the
proposed method for the NISQ era in Sec. 5.

2 Background
2.1 The quantum approximate optimization
algorithm (QAOA)
The QAOA can be regarded as a time-
discretization of adiabatic quantum computation
[5, 7, 17], whose p-layers circuit Ansatz constructs
the following state:

∣∣∣ψp(β⃗, γ⃗)
〉

=
[ p∏

l=1
e−iβlHM e−iγlHC

]
|+⟩⊗N (1)

where N is the number of qubits. HC is called the
problem Hamiltonian, which is defined uniquely
by the specific problem we are trying to solve (see
below for the MaxCut problem example), and
HM is called the mixer Hamiltonian, provided
in the same form for all problems, and given by
HM =

∑N
n=1 σ

x
n, where σj

n is the Pauli operator j
that acts on qubit n. Finally, |+⟩ = 1√

2(|0⟩ + |1⟩)
is the +1 eigenstate of σx. The p-dimensional
vectors β⃗ and γ⃗ are the variational real parame-
ters that correspond to HM and HC , respectively.
The objective cost function is determined by the
expectation value of the problem Hamiltonian

Fp(β⃗, γ⃗) =
〈
ψp(β⃗, γ⃗)

∣∣∣HC

∣∣∣ψp(β⃗, γ⃗)
〉

, (2)

and we denote the optimal parameters by
(β⃗∗, γ⃗∗), with which the optimal solution is at-
tained:

(β⃗∗, γ⃗∗) = arg opt
β⃗,γ⃗

Fp(β⃗, γ⃗). (3)

QAOA is an iterative algorithm: it starts with
an initial guess of the (β⃗, γ⃗) parameters, then the
expectation value of the problem Hamiltonian of
Eq. 2 is evaluated by repeated measurements of
the same circuit to reach a certain level of statis-
tical accuracy. Once the cost function is calcu-
lated, the (β⃗, γ⃗) parameters are updated towards
the next iteration by a classical optimizer so as
to optimize Fp(γ⃗, β⃗). The overall QAOA iterative
process requires many executions of the quantum
circuit; first, reaching a satisfactory level of statis-
tical error ϵ typically requires O(ϵ−2) shots [18].
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To keep the same level of accuracy, the number
of shots grows with the system size; it was re-
cently estimated to grow exponentially with size
[19]; second, the optimization process requires
additional circuit executions: if the optimizer is
gradient-based, then the derivative of the cost
function with respect to the (β⃗, γ⃗) parameters
must also be calculated at each iteration, requir-
ing many additional executions of the quantum
circuit to evaluate the gradients, e.g., by following
the so-called “parameter shift rule" [20, 21]. Al-
ternatively, gradient-free optimizers can avoid the
calculations of the derivatives, yet at a high cost
of many more optimization iterations [22]. The
iterative QAOA process thus requires many exe-
cutions of the quantum circuit and each optimiza-
tion step that can be avoided translates directly
into a significant reduction in computational re-
sources.

2.2 The MaxCut problem
The maximum-cut (MaxCut) problem is an NP-
hard combinatorial problem that has become the
canonical problem to benchmark QAOA [10, 23].
It is defined over an undirected graph G = (V,E),
where V = 1, 2, ..., N denotes the set of nodes,
and E is the set of edges. The (unweighted) max-
imum cut objective is the partition of the nodes
into two groups {+1,−1}, such that the number
of edges connecting nodes from the two different
groups is maximal.

Within QAOA, the problem Hamiltonian HC

that corresponds to the MaxCut problem is given
by [5]:

HC = 1
2

∑
(i,j)∈E

(
1 − σz

i σ
z
j

)
, (4)

such that an edge (i, j) contributes to the sum if
and only if the (i, j) qubits are measured anti-
aligned. The common performance metric of
QAOA for the MaxCut problem is the approx-
imation ratio:

r = Fp(β⃗∗, γ⃗∗)
Cmax

(5)

where Cmax is the maximum cut of the graph.

2.3 QAOA initialization techniques
The attempt to find optimal parameters for
QAOA, which would require a minimum num-

ber of optimization steps for solving the MaxCut
problem, is currently an extensive research topic.

The most intuitive initialization scheme is lin-
ear, where the (β⃗, γ⃗) parameters vary linearly
from one layer to the other, such that β is grad-
ually turned off and γ is turned on. This linear
approach is inspired by adiabatic quantum com-
putation [17]: the circuit begins from the ground
state of the mixer Hamiltonian and aims at reach-
ing the ground state of the problem Hamiltonian.
While very simple and computationally efficient,
the linear solution can be sub-optimal, see e.g.,
[10, 23]. As an alternative approach, several ini-
tialization methods selected the same set of pa-
rameters for common type graph instances, such
as regular graphs [7, 12, 10, 14, 24]. For ex-
ample, it was suggested in [7] to use a batches
optimization method, in which initial parame-
ters are found by optimizing batches of graphs
in parallel. This way, the parameters fit multi-
ple graphs and should also fit new graphs. The
problem, however, with such homogeneous meth-
ods is that in practice, the optimal parameters
change from one graph instance to another, even
within the same family of graphs [10]. Such non-
personalized methods ignore by construction pos-
sible relations between specific problem instances
and their corresponding optimal parameters.

Indeed, other studies have suggested using a
different, personalized set of parameters for each
problem instance. One method suggested initial-
izing a p+1 layers circuit based on the optimized
p layers circuit. This proved useful [10]: for 3-
regular graphs, the number of optimization steps
reduced exponentially, from 2O(p) for random pa-
rameter initialization to O(poly(p)) [10]. How-
ever, it required the full optimization of the p lay-
ers circuit. Similarly, Ref. [15] used a regression
model to predict the initial parameters of QAOA
for a circuit with p ≥ 2, given the optimized pa-
rameters for the corresponding single layer cir-
cuit, i.e. p = 1. This requires the generation of an
optimized dataset for both the one-layer circuit
and the desired p-layers circuit; Moreover, given
a new problem instance, this method requires full
optimization of its single-layer circuit. Recently,
it was shown that reusing the optimal parame-
ters of small graph instances can be beneficial for
solving the MaxCut problem of larger graph in-
stances, when using single-layer QAOA circuits
(p = 1) [25]. This is due to the confined combi-
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natorial number of small regular subgraphs with
radius p (the connection between the number of
circuit’s layers and the performance on p-radius
graphs was analyzed in [5] and is also addressed
here, in Sec. 4.4). However, for p > 1 the com-
binatorial number of subgraphs increases rapidly
and the method becomes less practical.

The Trotterized quantum annealing (TQA) is
an initialization protocol that personalizes the
initial parameters for a new problem instance by
running the quantum circuit on many different
linear initializations and choosing the initial pa-
rameters that achieve the best result [11]. An-
other approach proposed in [24] is a multi-start
method in which the objective function is evalu-
ated in different places in the parameters domain
by using gradient-free optimizers. They show
that it is possible to reach good minima with fi-
nite number of circuit evaluations. These meth-
ods perform well but at a high computational cost
per problem instance, as they optimize the initial
parameters for each new problem instance. In
particular, they do not leverage the knowledge
obtained from previous QAOA optimizations.

Several methods used machine learning tech-
niques to improve the performance of QAOA.
For example, several studies have attempted
to facilitate the optimization step by replacing
the standard classical optimizers with reinforce-
ment learning methods and meta-learning algo-
rithms [13, 26, 27, 28, 29, 30, 31]. Egger et al. pro-
posed the warm-start QAOA algorithm, where
the qubits are initialized in an approximated solu-
tion instead of the uniform superposition as typi-
cally done in QAOA [32]. Jain et al. used a graph
neural network (GNN) for predicting the proba-
bility of each node being on either side of the cut
in order to initialize warm-start QAOA [33]. Un-
like these methods, we use NN only to predict
the initial parameters. Since we do not alter the
optimization process, our method can be applied
together with any of the other methods.

3 The Method

Given a combinatorial optimization problem, we
predict the best initialization parameters for
QAOA for a new particular problem instance, as
illustrated in Fig. 1. We use a simple, fully con-
nected neural network (NN) that takes as an in-
put an encoding of the problem instance and pre-

dicts an initialization parameters for that specific
instance. The encoding of the problem instances
may vary from one combinatorial problem to an-
other. In our case of solving the MaxCut problem
we encode each graph instance by its adjacency
matrix, which is then fed to the network, as de-
scribed below.

The method is based on the assumption that
the QAOA was already applied on n different
problem instances S = {si}n

i=1, and that both the
set of instances and the set of the corresponding
final parameters P = {β⃗i, γ⃗i}n

i=1 were saved and
can be used as labeled data for the NN training.
This allows us to exploit past QAOA calculations
for predicting the initial parameters (β⃗new, γ⃗new)
for a new problem instance.

Formally, we train a neural network fθ to map
each problem instance from S to its optimal cir-
cuit parameters from P . The input of the NN
encodes the problem instance and the NN out-
put is a vector of size 2p, where p is the number
of layers in the quantum circuit: p parameters
for β⃗ and p parameters for γ⃗. The neural net-
work parameters θ are trained to minimize the
L2 norm

θ = arg min
θ

n∑
i=1

||fθ(si) − (β⃗i, γ⃗i)||2. (6)

Finally, once the neural network is trained, pre-
dicting the initial parameters for a QAOA cal-
culation of a new problem instance is done by
setting (β⃗new, γ⃗new) = fθ(snew).

In comparison to previous methods, which ei-
ther offer a fixed set of parameters for all problem
instances or personalize the parameters per prob-
lem instance, but at a high cost of extra quan-
tum circuit execution, our scheme manages, by
design, to personalize the parameters per prob-
lem instance with no such extra cost. This is an
a-priori advantage. In the next section the em-
pirical performance of the methods is examined.

3.1 Applying to the MaxCut problem

We exemplify our method on the MaxCut prob-
lem. We encode each problem instance, i.e., a
graph, by its adjacency matrix. The matrix is
reshaped into a one-dimensional vector of length
N(N−1)

2 , which is given as an input to the NN.
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Figure 1: An Illustration of the proposed method: each
new problem instance (e.g., a graph in the MaxCut prob-
lem) is encoded (e.g., by its adjacency matrix) and in-
serted as an input into a trained neural network. The lat-
ter predicts better initial parameters for QAOA, specifi-
cally tailored to the given problem instance (the graph).

4 Results

4.1 Setup, benchmarking, and implementation
details

Setup
We test the proposed method by solving the
MaxCut problem for Erdős–Rényi graphs of
N = 6 − 16 nodes. In an Erdős–Rényi graph,
each edge (i, j) exists with a certain probability,
independently from all other edges. We consider
two different graph ensembles: (a) constant
Erdős–Rényi graphs - where the existing prob-
ability for each edge is constant and equals
p = 0.5, for all graphs; (b) random Erdős–Rényi
graphs - where the edge probability changes be-
tween graphs but remains the same for all edges
within a graph: for each graph, we uniformly
sample a probability in the range p ∈ {0.3, 0.9}
and assign it to all the edges. While the first,
constant probability setup is the most commonly
considered in the literature, see e.g., [11], the
latter setup with a random edge probability,
better represents natural, real-world scenarios,
where the probability for creating a connection
between nodes depends on variables that may
vary across graphs. For example, if the nodes
of the graph represent people and a connection

indicates an interaction between two people,
then the probability of the interaction usually
varies depending on external variables, such
as place, age, culture, etc., and varies between
different communities.

Benchmarking
To evaluate the proposed initialization method,
we compare its performance to those of four ini-
tialization methods: (a) the batches optimization
method [7]; (b) the Trotterized quantum anneal-
ing (TQA) initialization procedure [11] with a
predefined ∆t; (c) a simple linear method; and
(d) an average method. The first two methods
[7, 11] are state-of-the-art methods, described
in Sec. 2.3, whereas the latter two are simpler
yet natural baselines. We chose to focus on the
batches and the TQA optimization methods
because they are the best initialization methods
known to date that, given a new test graph, do
not require any additional computational effort,
as is also the case in our proposal.

To enable the comparison, we implemented
all four benchmark methods, as follows. In the
batches optimization method, the QAOA initial
parameters are determined by finding a fixed, op-
timized set of parameters for a large training set
of graphs that are optimized in parallel. This set
of optimized parameters is then used as the ini-
tialization point for new test graphs. We imple-
mented the batches optimization method, where
we used 200 training graphs for each setup choice,
i.e., {graph ensemble (random or constant ER),
number of qubits, and number of layers}. This is
the same training set size used in Ref. [7], which
we explicitly verified is sufficient, in the sense that
optimizing over a larger set did not yield param-
eters that performed better on the test set.

The TQA initialization procedure takes the fol-
lowing linear form:

βl =
(

1 − l

p

)
∆t, γl = l

p
∆t, (7)

where l = 1...p indicates the layer’s number in the
quantum circuit. In the complete TQA protocol,
the hyperparameter ∆t is determined by perform-
ing a simple grid search that optimizes the overall
performance for each graph. This requires extra
quantum circuit executions for each new graph
instance, which we wanted to avoid to enable a
fair comparison. It was numerically observed in
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Ref. [11] that for graph ensembles of similar na-
ture (e.g., regular unweighted graphs, weighted
regular graphs, and constant ER graphs) the op-
timal value of ∆t does not vary by much. There-
fore, in our experiments, for each kind of ensem-
ble (constant and random ER), number of nodes
n, and number of layers p, we performed the com-
plete TQA protocol over 50 training graphs and
averaged their results to find a single ∆t∗ that
optimizes the overall performance. We then used
this optimized ∆t∗ to evaluate the performance of
TQA on new graphs. See Sec. A in the appendix
for more details.

We also implemented the simpler baselines:
(a) a linear initialization in which β decreases
linearly from π

4 (1 − 1
p) to π

4p and γ increases
linearly from π

p to π(1 − 1
p). This schedule is

similar to the TQA one but simpler, as it employs
no further hyper-parameters. The reason for this
particular choice is the periodicity of βi ∈ [0, π

2 ]
and γi ∈ [0, 2π] when plugged into Eq. 2. Note
that a similar choice was made in [10, 34]; (b) an
average initialization, which takes the optimal
parameters of 100 training graphs and averages
them. This initialization method has not yet
been addressed in the literature. Yet, it is natu-
ral to consider it once we have independent sets
of optimized (β⃗, γ⃗) parameters, as we do in this
work. Moreover, our numerical results indicate
that, given its simplicity and performance, this
is a relatively good choice. We further tried a
random initialization scheme, but it performed
poorly, starting at a low approximation ratio
and reaching suboptimal local minima after
optimization. Thus, it is not shown here.

Implementation Details
We built a dataset of 5, 000 graphs for each
setup combination, namely the size of the graph,
number of layers, and sampling technique, as
described above. In particular, we considered
Erdős–Rényi (ER) graphs of sizes 6 to 16 nodes,
whose edges are sampled randomly at a probabil-
ity of 0.5 or using a random uniform probability
in the range [0.3, 0.9]. Then, we optimized
each graph’s MaxCut solution by the QAOA
algorithm, using the BFGS classical optimizer
[35, 36, 37, 38], where we used the full TQA
algorithm to initialize our (β⃗, γ⃗) parameters.
Using this procedure, we built a labeled training
set of {graph, optimized (β⃗, γ⃗) parameters}

pairs, with which we trained the neural network.
All our QAOA circuit executions were performed
on Qiskit’s noiseless statevector simulator [39].

For all setups, we used the same simple 3-layer
network architecture: the input layer is composed
of N(N−1)

2 neurons, so as to encode the adja-
cency matrix of an undirected graph of N nodes,
the hidden layer has 100 neurons, and the out-
put layer has 2p neurons that encode the learned
(β⃗, γ⃗) parameters of the optimized QAOA circuit.

4.2 Constant Erdős–Rényi

We begin with ER graphs with N = 14 nodes
generated with a constant edge probability of 0.5.
Fig. 2a compares the performance of the proposed
NN method with those of: (a) the batches opti-
mization method [7]; (b) the TQA initialization
procedure [11]; (c) the linear method, and (d)
the average method, as described above. Each
point in the graph indicates the averaged approx-
imation ratio achieved by a 2-layer QAOA circuit
over 50 test graphs as a function of the QAOA op-
timization step iterations. The standard error of
the mean is less than 0.47% and is not displayed
in the figure for visual clarity.

It is seen that prior to the QAOA optimization
steps, at the 0’th iteration, each method reaches a
different approximation ratio and that all meth-
ods improve from one iteration to another un-
til converging to the same approximation ratio.
Yet, each method converges at a different rate.
Fig. 2a demonstrates that, compared to all other
methods, the NN method begins at a better ap-
proximation ratio and converges the fastest. This
means that the NN learns to predict adequate
(β⃗, γ⃗) parameters, given the adjacency matrix of
a test graph. In fact, it can be observed that the
initial approximation ratio performance of our
NN method is so close to the final parameters
that hardly any optimization step is required.

It is also observed that the simple average
method is the second best approach for the con-
stant ER ensemble with an edge probability of
p = 0.5. This implies that the distribution over
the (β⃗, γ⃗) parameters is rather confined. What
would be the effect of a more widespread ensem-
ble distribution on our results? To check that, we
next examine the performance of the benchmark
initialization methods, alongside the NN one, on
a random ER ensemble.
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(a) Constant ER with edge probability p = 0.5 (b) Random ER with edge probability p ∈ [0.3, 0.9]

Figure 2: The approximation ratio during QAOA optimization, starting from initial parameters obtained by the
different methods, averaged over 50 graphs of N = 14 nodes. The QAOA circuit is composed of two layers. All
graphs are sampled using ER: (a) with constant edge probability; (b) with random edge probability. The proposed
NN method converges the fastest in both cases. A more significant improvement is observed in the case of graphs
with random edge probability.

4.3 Random Erdős–Rényi

So far we tested our method in the standard
setup: graphs are randomly drawn from ER with
an edge probability of 0.5. We now expand this
setup by assigning each graph with an edge prob-
ability that is sampled uniformly from the inter-
val [0.3,0.9]. This way, we increase the diver-
sity between the graphs, making it more realistic
and challenging to guess good initial parameters
[10, 11, 25].

Fig. 2b shows the performance of all our bench-
mark methods in the case of such a random-ER
graph ensemble. The results resemble those of the
constant-ER ensemble, with similar trends. In
particular, the NN method begins from the high-
est approximation ratio and converges faster than
all other methods. Yet, in the random-ER case,
the differences between the methods are much
more pronounced. First, it is seen that, in con-
trast to the constant-ER case, not all methods
converge to the same approximation ratio, with
the simple linear method reaching the lowest ap-
proximation ratio. Moreover, all methods, except
for the NN one, exhibit a much slower conver-
gence rate than the constant-ER scenario. The
performance of the NN method is manifested in
the achievable approximation ratio at the zero’th
iteration, showing a significant approximation ra-
tio gap of roughly 3% from the second-best result
obtained by the batches optimization method.

This is not surprising: the NN method is de-

signed to predict the best (β⃗, γ⃗) parameters per
graph instance, i.e., to personalize its perfor-
mance. This is in contrast to all the benchmark
methods, which essentially suggest a fixed set of
(β⃗, γ⃗) parameters for all the test graphs, indepen-
dent of the particular graph’s structure. It should
be noted that, in principle, the TQA has the ca-
pacity of personalizing over a particular graph,
by searching for the optimal dt that maximizes
its results. However, as explained in Sec. 4.1, this
search of ∆t for each graph comes at a very high
computational cost per graph, which we aim to
avoid.

It is seen in Fig. 2b that also in the more
challenging case of random-ER graphs, the NN
method requires merely a single iteration to con-
verge. In contrast, the TQA, which converges
the fastest out of all other methods, requires
about 8-12 iterations (depending on accuracy)
to reach the same level of approximation ratio.
We demonstrate the computational saving of our
method by estimating the quantum circuit execu-
tions in our experiments. In our case, using the
BFGS optimizer, we observed that even in the
small p = 2 circuit depth, each intermediate iter-
ation requires, on average, 12 estimations of the
cost function Fp(β⃗, γ⃗), each with different (β⃗, γ⃗)
parameters, so as to evaluate the relevant gradi-
ents. As each cost function estimation typically
requires thousands of shots to get a meaningful
statistical accuracy, we get an overall saving of
hundreds of thousands of quantum circuit exe-
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cutions. This saving is non-negligible and is ex-
pected to grow linearly with the circuit’s depth.

4.4 Varying the size of the graph
In previous sections we examined the perfor-
mance of the proposed NN method on graphs
with a fixed number of N = 14 nodes. Next, we
examine the method on random-ER graphs with
varying number of nodes and draw our attention
to the first QAOA evaluation, without applying
any optimization steps. To that end, we gener-
ated 200 different graphs for each graph size, from
N = 6 to 16. Then, for each graph, we obtained
the initial parameters using all the different meth-
ods, and ran a 2-layer QAOA circuit using those
parameters (zeroth iteration only). Fig. 3 shows
the average approximation ratio achieved by each
method as a function of graph size.

Figure 3: The approximation ratio attained by each ini-
tialization method shown as a function of the number
of nodes in the graph. Graphs were sampled using ER
with a random edge probability for each graph size as in
Fig. 2b. The approximation ratios were calculated at the
zeroth iteration, i.e., no optimization steps were taken.
The number of layers is p = 2. It is observed that the
relative performance of our proposed method increases
with graph size.

It is seen that the NN-method outperforms all
other methods, irrespective of the graphs’ size.
Moreover, the preference of the NN-method over
the other methods increases with the number of
nodes, especially with respect to the batches and
the average optimization methods. In compari-
son to the TQA method, the NN shows a rather
fixed, large performance gap of roughly 8% in ap-
proximation ratio in favor of the NN method.

These results indicate that as we increase the
graph size N for a fixed number of layers p, the

advantage of our method becomes more signifi-
cant. To understand this trend, we go back to
the structure of the QAOA algorithm and con-
sider what happens when the QAOA circuit is
kept fixed while the number of nodes increases,
in approximating the MaxCut problem. We re-
call that QAOA is a p-local algorithm: in the
case of the MaxCut problem, the algorithm’s ob-
jective function, see Eq. 2, is a sum of the expec-
tation value terms of all edges in the graph (i.e.,
sum of

〈
ψp(γ⃗, β⃗)

∣∣∣σz
i σ

z
j

∣∣∣ψp(γ⃗, β⃗)
〉

terms); follow-
ing the commutation relation of the involved op-
erators reveals that each expectation value term
is influenced only by nodes that are at most p
edges away from the calculated edge term, i.e. all
subgraphs with radius of at most p [5, 40]. Zhou
et al. showed that for certain families of graphs,
such as the 3-regular graphs, where the possible
number of subgraphs with confined radius p is
finite, the spread of the optimal parameters van-
ishes in the limit N → ∞ [10]. This may justify
a non-personalized approach which initializes a
single set of (β⃗, γ⃗) parameters for all graph in-
stances. In contrast, in random ER graphs, the
number of confined subgraphs is not finite, but
rather grows with N . Accordingly, the set of op-
timal parameters is not expected to converge to
a single set as N grows. This explains the decline
of the approximation ratio as N grows for meth-
ods that try to initialize with the same parame-
ters for all graphs and emphasises the power of
a personalized approach as proposed here. Next,
we examine further the effect of personalizing the
initial parameters.

4.5 Personalization
The key objective of our method is to create per-
sonalized initial parameters per problem instance.
Fig. 4 depicts the (β⃗, γ⃗) values as a function of
the layers in a 4-layers circuit for three individual
graphs (graph-1, graph-2, graph-3) with N = 12
nodes, sampled from the random ER ensemble.
The exact optimized parameters are marked in
dotted-blue lines of different shades and different
markers: graph-1 is marked in dark blue circles,
graph-2 in blue squares, and graph-3 is shown
in light blue triangles. The NN parameters are
shown in solid lines with corresponding shades
and markers. The simple average method, the
batches-method, and the TQA, all produce a sin-
gle set of parameters, depicted in red, brown, and
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Figure 4: Initial β (left figure) and γ (right figure) parameters as a function of layers in the QAOA circuit, for three
different individual graphs. A comparison is made between the prediction of the NN (solid blue lines), the optimized
parameters (dashed blue lines), and the other non-personalized baselines: the simple average method (solid red line
with square marks), the Batches method (solid brown line with circle marks), and the TQA (solid orange with star
marks). The NN predictions are shown to follow closely the optimized curves for all three graphs.

orange, respectively. It is evident that the (β⃗, γ⃗)
parameters obtained by our NN approach closely
resemble the optimal parameters per graph, thus
performing the personalization successfully. In
contrast, other approaches, that do not have the
flexibility to personalize the initial parameters,
predict parameters that are approximately linear
and are further away from the optimal parame-
ters of the individual graphs.

5 Discussion and Outlook
This work joins an existing effort to find proper
initialization for the QAOA circuit’s variational
parameters. We showed that a simple neural net-
work could be trained to predict initial (β⃗, γ⃗)
parameters for QAOA circuits that solve the
MaxCut problem, per graph instance. More-
over, we showed that these predicted parame-
ters match very well with the optimal parameters,
to which the QAOA iterative scheme eventually
converges. This enables an effectively iterative-
free approach, where the QAOA circuit is ex-
ecuted only once, with the predicted parame-
ters, thus saving significant amount of compu-
tational resources. We demonstrated that our
approach requires up to 85% fewer iterations
compared to current state-of-the-art initialization
methods to reach optimized results for solving the
MaxCut problem on both constant and random
Erdős–Rényi graphs.

Our method assumes the availability of previ-

ous QAOA optimizations for different instances
of the same problem. The neural network we em-
ployed is a simple, fully-connected 3-layer net-
work and the classical burden of training the
network is negligible. Given a new problem in-
stance, our method directly predicts the corre-
sponding variational parameters without needing
to execute the quantum circuit. In addition, as
the training set grows, the neural network can
rapidly adjust to the new data by few classical-
learning iterations. Thus, in contrast to other
methods, our method does not require any auxil-
iary executions on quantum devices. In this pa-
per we employed the simplest deep network pos-
sible. Other NN architectures, like graph neural
networks (GNN), may be better for this problem,
and we expect this to be a topic of future research.

The ability of the proposed NN method to
personalize the predicted parameters per graph
instance becomes more significant as the graph
ensemble is more varied and the spread of op-
timal parameters is broader. We demonstrated
this property by showing that while the proposed
method outperforms all benchmark methods for
constant-edge Erdős–Rényi graphs, it suppresses
them even further when the edge probability is
taken to be random. We thus conjecture that
our method will provide an even more significant
benefit for classes of graphs that show larger dis-
tributions, e.g., for random and weighted graphs,
for which the optimal parameters are known to
have a wider distribution [10]. Such graphs are

9



prevalent in many practical applications, such as
VLSI degisn, and social networking, see e.g., [41].

Another manifestation of the same observation
is that for the realistic scenario of a finite num-
ber of layers p and a growing number of graph
nodes N , our method leads to better performance
compared to other methods (see Fig. 3) for ap-
proximating the MaxCut of random Erdős–Rényi
graphs; As quantum computers develop and have
more qubits, they are able to solve larger instance
problems. Yet, for practical solutions, the num-
ber of layers in QAOA must be finite. This makes
our method especially practical in the NISQ era,
where quantum devices increase in size but are
too noisy for executing deep circuits.

Finally, in this work we focused on the Max-
Cut problem but we believe that our method is
beneficial for any optimization problem, solved
via a variational quantum algorithm (not neces-
sarily QAOA), that incorporates an underlying
mapping between the different instances of the
problem and their corresponding optimized vari-
ational parameters.
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A Finding an optimal ∆t for the TQA method
In our experiments, for each number of nodes N , number of layers p, and graph ensemble (constant
and random ER graphs, as in the main text), we applied a grid search to find the optimal ∆t (Eq. 7),
as in Ref. [11]. We averaged the best ∆t’s over 50 different graphs to obtain a single initialization that
would fit as well as possible the variety of graphs. Fig. 5 shows the optimal ∆t for different graph sizes,
with p = 2. For the random ER graphs, the spread of the optimal ∆t is wider, as the distribution of
the graphs is broader.

Figure 5: Optimal ∆t for TQA initialization for each graph size (i.e. the number of nodes), with p = 2. Constant
Erdős–Rényi graph ensemble is drawn in yellow and random Erdős–Rényi graph ensemble in orange. The shades
mark the standard error of the mean (SEM).
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