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Abstract

Deep learning models are often sensitive to adversarial attacks, where carefully-designed

input samples can cause the system to produce incorrect decisions. Here we focus on

the problem of detecting attacks, rather than robust classification, since detecting that an

attack occurs may be even more important than avoiding misclassification. We build on

advances in explainability, where activity-map-like explanations are used to justify and

validate decisions, by highlighting features that are involved with a classification decision.

The key observation is that it is hard to create explanations for incorrect decisions.

We propose EXAID, a novel attack-detection approach, which uses model explainability

to identify images whose explanations are inconsistent with the predicted class. Specifically,

we use SHAP, which uses Shapley values in the space of the input image, to identify which

input features contribute to a class decision. Interestingly, this approach does not require

to modify the attacked model, and it can be applied without modeling a specific attack. It

can, therefore, be applied successfully to detect unfamiliar attacks, that were unknown at

the time the detection model was designed.

We evaluate EXAID on two benchmark datasets CIFAR-10 and SVHN, and against

three leading attack techniques, FGSM, PGD and C&W. We find that EXAID improves

over the SoTA detection methods by a large margin across a wide range of noise levels,

improving detection from ∼ 70% to over 90% for small perturbations.
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Chapter 1

Introduction

Machine learning systems can be tricked to make incorrect decisions when presented with

samples that were slightly perturbed, but in special, adversarial ways [Szegedy et al.,

2013]. This sensitivity, which was widely studied, can hurt networks regardless of the

application domain and can be applied without knowledge of the model [Papernot et al.,

2017]. Detecting such adversarial attacks is currently a key problem in machine learning.

To motivate our approach, consider how most conferences decide on which papers

get accepted for publication. Human classifiers, known as reviewers, make classification

decisions, but unfortunately, these are notoriously noisy. To verify that their decision is

sensible, reviewers are also asked to explain and justify their decision. Then, a second

classifier, known as an area-chair or an editor, examines the classification, together with the

explanation and the paper itself, to verify that the explanation supports the decision. If the

justification is not valid, the review may be discounted or ignored.

In this work, we build on a similar intuition: Explaining a decision can reduce mis-

classification. Clearly, the analogy is not perfect, since unlike human reviewers, for deep

models we do not have trustworthy methods to provide high-level semantic explanations of

decisions. Instead, we study below the effect of using the wider concept of explanation on

detecting incorrect decisions, and in particular given adversarial samples that are designed to

confuse a classifier. The key idea is that different classes have different explaining features

and that by probing explanations, one can detect classification decisions that are inconsistent

with the explanation. For example, if an image is classified as a dog, but has an explanation

that gives high weight to a striped pattern, it is more likely that the classification is incorrect.
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We focus here on the problem of detecting adversarial samples, rather than developing

a system that provides robust classifications under adversarial attacks. This is because in

many cases we are interested to detect that an attack occurs, even if we cannot automatically

correct the decision.

The key idea in detecting adversarial attacks is to identify cases where the network

behaves differently than when presented with untainted inputs, and previous methods

focused on various different aspects of the network to recognize such different behaviors

Lee et al. [2018]; Ma et al. [2018]; Liang et al. [2018]; Roth et al. [2019]; Dong et al.

[2019]; Katzir and Elovici [2018]; Xu et al. [2017]. To detect these differences, here we

build on recent work in explainability Lundberg and Lee [2017a]. The key intuition is

that explainability algorithms are designed to point to input features that are the reason

for making a decision. Even though leading explainability methods are still mostly based

on high-order correlations and not necessarily identify purely causal features, they often

yield features that people identify as causal [Lundberg and Lee, 2017b]. Explainability

therefore operates directly against the aim of adversarial methods, which perturb images

in directions that are not causal for a class. The result is that detection methods based on

explainability holds the promise to work particularly well with adversarial perturbations that

lead to nonsensical classification decisions.

There is a second major reason why using explainable features for adversarial detection

is promising. Explainable features are designed to explain the classification decision of

a classifier trained on non-modified (normal) data. As a result, they are independent

of any specific adversarial attack. Some previous methods are based on learning the

statistical abnormalities of the added perturbation. This makes them sensitive to the specific

perturbation characteristics, which change from one attack method to another, or with

change of hyperparameters. Instead, explainability models can be agnostic of the particular

perturbation method.

The challenge in detecting adversarial attacks becomes more severe when the perturba-

tions of the input samples are small. Techniques like C&W Carlini and Wagner [2017b]

can adaptively select the noise level for a given input, to reach the smallest perturbation

that causes incorrect classification. It is therefore particularly important to design detection

methods that can operate in the regime of small perturbations. Explanation-based detection
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is inherently less sensitive to the magnitude of the perturbation, because it focuses on those

input features that explain a decision for a given class.

In this work we describe an EXAID (EXplAIn-then-Detect), an explanation-based

method to detect adversarial attacks. It is designed to capture low-noise perturbations from

unknown attacks, by building an explanation model per-class that can be trained without

access to any adversarial samples.

Our novel contributions are as follows:

• We describe a new approach to detect adversarial attacks using explainability tech-

niques.

• We study the effect of negative sampling techniques to train such detectors.

• We also study the robustness of this approach in the regime of low-noise (small

perturbations).

• We show that the new detection provides state-of-the-art defense against the three

leading attacks (FGSM, PGD, CW) both for known attacks and in the setting of

detecting unfamiliar attacks.

(a) (b)

Figure 1.1: Illustration of EXAID. First, an image is classified by a standard image

classification system like ResNet. Then, an explanation is created based on the image, the

network activations and the network output. Finally, a detector checks if the generated

explanation is consistent with the predicted label. (a) An image of an owl is correctly

classified, and the produced explanation is consistent with the label “owl”. (b) An image of

peacock is perturbed and used as an attack. It is falsely classified as an owl, and is detected

as adversarial because its explanation is inconsistent with the predicted label.
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Chapter 2

Related work

2.1 Explainable AI

Due to the high non-linearity and nested architectures of deep neural networks, it is challeng-

ing to intuitively understand how does a deep neural network arrives at a specific decision

for a given input. This significantly impairs the use of deep neural networks for sensitive

tasks, where black-box predictions cannot be trusted by default, and the ability to explain

the result is required.

In the past few years, improving deep neural network interpretability has been an

intensive research area. New methods provided explanations at either model-level [Karpathy

et al., 2015; Sabour et al., 2017; Zhang et al., 2018a], or instance-level [Dabkowski and

Gal, 2017; Fong and Vedaldi, 2017; Ribeiro et al., 2016]. In this work, we will focus on

instance-level interpretability because our goal is to detect adversarial attacks on specific

instances.

Interpretability methods can be obtained in two ways. The first way is designing

interpretable models [Sabour et al., 2017; Zhang et al., 2018a; Chen et al., 2019; Wang et al.,

2017]. These models are generally less accurate than non-interpretable models, which leads

to a trade-off between model complexity and therefore accuracy and model interpretability.

The second way is extracting post-hoc interpretations [Simonyan et al., 2013; Smilkov et

al., 2017; Sundararajan et al., 2017; Zhou et al., 2016; Selvaraju et al., 2017; Ribeiro et al.,

2016; Lundberg and Lee, 2017b; Shrikumar et al., 2017] which does not require modifying

model architectures or parameters, thereby leading to higher prediction accuracy. In this
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work, we will consider post-hoc interpretations because our goal is to create a robust defense

that will be agnostic to the defended model.

We can divide post-hoc interpretation methods into two types: (1) Class activation

map [Zhou et al., 2016; Selvaraju et al., 2017] - which produces a class-discriminative

localization map. (2) Pixel sensitivity map [Simonyan et al., 2013; Smilkov et al., 2017;

Sundararajan et al., 2017; Shrikumar et al., 2017; Lundberg and Lee, 2017b]- which uses

calculations with gradients to assign importance scores to individual pixels toward explaining

the classification of an input.

2.2 Adversarial attacks

The literature on adversarial attacks is vast and includes different attack scenarios and

different ways to construct the adversarial examples. Basic attacks like Goodfellow et

al. [2014] let the attacker manipulate the image without any constraints except the total

amount of noise the attacker will add. A more challenging attack scenario is a real world

attack scenario Papernot et al. [2017]. In this scenario, the attacker’s ability to influence the

model’s input is only through the physical scene while taking the image, without any ability

to change the digital image. This is a much more difficult setup due to the inability to control

all the physical environment, like lighting conditions, photography angles, etc. Therefore,

unlike the digital case, the attacker cannot determine the value of each pixel individually at

will [Brown et al., 2017; Eykholt et al., 2018; Pautov et al., 2019; Kurakin et al., 2016a].

Another challenging attack scenario is when the attacker can change only a specific patch of

the image [Brown et al., 2017; Subramanya et al., 2019] or even only one pixel [Su et al.,

2019]. In this work, we gave the attacker the ability to manipulate directly the digital image.

We focus here on three high-performing adversarial attacks which we use in our experi-

ments. Each of the three represents a group of attacks that share the same main idea.

Fast Gradient Sign Method (FGSM). This attack by [Goodfellow et al., 2014] creates

a perturbation by ”moving” an example one step in the direction of the gradient. Let c

be the true class of x and J(C, x, c) be the loss function used to train our deep neural

network C. The perturbation is computed as a sign of the model’s loss function gradient

∆x = ε ∗ sign(∇xJ(C, x, c)), where ε ranging from 0.0 to 1.0. The parameter ε controls the
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perturbation magnitude and can be thought of as the noise-level of the adversarial sample.

Projected Gradient Decent (PGD). Madry et al. [2017] suggested to improve FGSM,

in the following way. One can interpret FGSM as a one-step scheme for maximizing the

inner part of the saddle point formulation. A more powerful adversary will be a multi-step

variant, which essentially applies projected gradient descent on the negative loss function

xt+1 = xt + ε ∗ sign(∇xJ(C, x, c)) while x0 = x.

Carlini and Wagner (C&W). Carlini and Wagner [2017b] employed an optimization

algorithm to seek the smallest perturbation that enables an adversarial example to fool

the classifier. Given a neural network F with logits Z, the attack uses gradient descent

to craft the adversarial example x′ by solving min||x′ − x||22 + c ∗ l(x′) where the loss

function l is defined as l(x′) = max(maxi{Z(x′)i : i 6= t} − Z(x′)t,−κ). The difference

max maxi{Z(x′)i : i 6= t} − Z(x′)t is used to compare the target class t with the next-

most-likely class. However, this is minimized when the target class is significantly more

likely than the second most likely class, which is not a property we want. This is fixed

by taking the maximum of this quantity with −κ which controls the confidence of the

adversarial examples. When κ = 0, the adversarial examples are called low-confidence

adversarial examples and are only just classified as the target class. As κ increases, the

model classifies the adversarial examples as increasingly more likely, this is called high-

confidence adversarial examples. As showed in [Carlini and Wagner, 2017a], this attack is

considered to be one of the most powerful attacks and therefore is a common baseline.

When designing attacks, previous studies took into account various factors: the probabil-

ity that the attack is successful, the effect on the appearance of a perturbed image, and the

time it takes to run the attack. The above three methods prioritize these aspects differently,

reaching different trade-off operating points. Specifically, FGSM is usually faster and the

C&W attack yields less-visible perturbation of the input images.

2.3 Detecting adversarial attacks

At a glance, defense methods are divided into three main methods:

1. Pre-process the input in order to break the effect of the adversarial perturbation

[Prakash et al., 2018; Gu and Rigazio, 2014; Osadchy et al., 2017; Das et al., 2017].
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2. Train robust models that will be able overcome the existence of an adversarial per-

turbation and make a correct classification. [Goodfellow et al., 2014; Kurakin et al.,

2016b; Tramèr et al., 2017]

3. Detect adversarial examples [Liang et al., 2018; Xu et al., 2017; Ma et al., 2018; Lee

et al., 2018; Katzir and Elovici, 2018; Pang et al., 2018; Roth et al., 2019].

Here we focus on the problem of detecting attacks, rather than robust classification, since

detecting that an attack occurred may be even more important than avoiding misclassification.

Several previous techniques have been proposed to detect adversarial examples. Liang et

al. [2018] measured the effect of quantization and smoothing of the image on the network

classification, both parameterized as a function of image entropy. Similarly, Xu et al. [2017]

suggested to reduce the degrees of freedom of the input space by applying transformations

like quantization and smoothing, and then comparing the model predication before and after

each transformation. Ma et al. [2018] measured the characteristics of the region surrounding

a reference example. Lee et al. [2018] models the distribution of activations at the hidden

layers of the classifier, using a Gaussian mixture model, and feeds the likelihood to a

classifier. Katzir and Elovici [2018] models the changes in the labels of a K-NN for each

activation layer in the base model. Pang et al. [2018] propose using a new loss in training,

which encourages the neural network to learn latent representations that better distinguish

adversarial examples from normal ones. Roth et al. [2019] models the statistical robustness

of log-odds to perturbations, for normal and adversarial examples. Generally speaking, these

methods assume that adversarial examples differ intrinsically from natural images, either in

the sample space or because the perturbation affects the propagation of activity in the neural

network. Some of those methods require modifying the base model. Very recently, [Fidel et

al., 2019] described an explanation-based approach to detection, related to the current work.

2.4 Attacking explainability models

The next step after attacking a model is to attack the explainability model. Such an attack

can have multiple desirable affects and can be achieved in several ways. Slack et al. [2019]

showed a technique that effectively hides the biases of any given classifier, in such a way that

its predictions on the input data distribution still remain biased, but the post-hoc explanations
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of the scaffolded classifier look innocuous. Note that this attack changes the classifier itself,

and not a specific example, as is commonly the case in adversarial attacks. Ghorbani et

al. [2019] showed that two perceptively indistinguishable inputs with the same predicted

label can be assigned very different interpretations. Subramanya et al. [2019] and Zhang

et al. [2018b] present a new class of attacks that generate adversarial examples not only

misleading the base models but also deceiving their coupled interpretation models. These

results indicate that existing interpretability methods are not reliable in the sense that they

do not really explain the reason for the model’s classification.

Although explainability methods can be fooled, it can be done only when the attacker

has full knowledge about the explainability model. In this work, we test the detection models

against oblivious adversaries, an attack scenario in which an attacker has full knowledge

about the base model (white box attack), but is not aware of the existence of the defense

model. We justify this scenario in chapter 4.
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Chapter 3

EXAID: EXplAIn then Detect

EXAID consists of two components: (1) Explain. Create per-class explanations for both

correct predictions and incorrect ones. (2) Detect. Train a binary classifier to decide if an

explanation is consistent with the class decision. These two components are schematically

shown in Figure 1.1.

3.1 Explain

The first step in EXAID implements an explanation model. Given a pretrained classifier that

may be attacked, we used an explainability model to extract explanations for every sample

classified by the model. The explanation model can take as input the raw input image, as

well as the whole base model architecture and weights, and produce an explanation in the

terms of the input features. Formally it is a function that maps a sample and a classifier, and

its prediction into explanation space E : (x, ftheta(x))→ Rn, where ftheta is a classification

model producing a predicted label y = output(f(x)).

Since our goal is to learn which explanations are typical for each class, we collected

both positive explanations - applying an explanation model to a correct prediction of the

network, and negative explanations - corresponding to incorrect predictions of the model.
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3.2 Sampling explanations

Creating positive explanations E(xi, yi) is usually straight forward, as one simply applies

the explanation model on each sample that was correctly classified f(xi) = yi. More care

should be given to creating negative explanations. We consider three types of negative

explanations: wrong negatives, adversarial negatives and other-class negatives.

First, one may collect samples (xi, yi) where the model made an incorrect decision

f(xi) 6= yi, and collect their explanations E(xi, f(yi)). We name these wrong negatives.

For models that are well trained, the number of these explanations is small. Furthermore,

not all classes are confused by other classes, and only some classes may lead to explanations

of some other classes.

Second, one can employ an adversarial attack on the training data and collect negative

explanations of adversarially perturbed samples. We name them adversarial negatives.

As with wrong negatives, these explanations correspond to cases where the model made

an incorrect decision, but unlike wrong negatives the explanations may have a different

distribution because the input was designed to confuse the network. Even if the specific

type of adversarial attack is not known, these samples may be useful because they are based

on fooled decisions and may reflect typical patterns of adversarial examples. However,

training against an incorrect attack may cause overfitting to a specific type of attack and hurt

detection accuracy.

Third, for every labeled sample (xi, yi), we produce explanations E(xi, y) for all in-

correct classes y ∈ Y , y 6= yi. For example, for a car image correctly classified as a car,

we produce explanations for classes like dogs and cats. These explanations are used as

other-class negatives for the correct class yi.

3.3 The explainability model

As an explainable AI approach, we used SHAP deep explainer. As shown in [Lundberg and

Lee, 2017a] SHAP is considered a leading explainer, providing explanations that have a

stronger agreement with human explanations than other methods. We, therefore, believe

it is likely to capture the ”correct” features by which people make labeling decisions. In

addition, Lundberg and Lee [2017a] has shown that SHAP is the only explainer that has
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both local accuracy and consistency, which are desirable properties.

3.4 Detect

Given a set of positive and negative explanations per class, we train a deep binary classifier

per class, to detect explanations that are inconsistent with model predictions. Note that in

this setting, it is natural to train a detector as a binary multiclass multi-label classifier, and

not as a multiclass classifier, because we wish to condition the decision on the prediction of

the image classifier.

When training the detector, one may consider two learning setups, aiming to protect

against unknown-attacks, or against familiar attacks. It appears as if defending against a

known attack would be an easier task, because one may learn the properties of the attack.

Unfortunately, since new attacks can be easily designed, it is highly desirable to devise

generic defenses.

We address this topic by controlling the data that is used for training the detector.

Specifically, we consider two variants of EXAID.

EXAID familiar. During training, the binary detector is presented with adversarial negatives.

It can, therefore, learn a distribution of explanations resulting from a specific adversarial

attack. Specifically, we trained using high-noise FGSM.

EXAID unknown. The binary detector is not presented with any adversarial negatives

during training. The only negative explanation the classifier trained on are other-class

negatives and wrong negatives.

Below we tested both variants on the known attack (FGSM) and on unfamiliar attacks

(PGD, C&W).
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Chapter 4

Experiments

We evaluated EXAID on two benchmark data sets, in the task of attack detection. Our code

is available at https://github.com/amosy3/EXAID.

4.1 Datasets

We evaluated EXAID on two standard benchmarks: CIFAR10 [Krizhevsky et al.] and

SVHN [Netzer et al., 2011]. As Carlini and Wagner [2017a] showed, MNIST is not a

good dataset for evaluating adversarial defenses. This is probably due to the fact that it is a

low-dimension dataset, making it easier to detect changes an attacker made to the image.

[Carlini and Wagner, 2017a] show their results on CIFAR-10. In order to show the validity

of our results on more than one dataset, we also used SVHN that has similar complexity. The

CIFAR-10 dataset consists of 60,000 32x32 color images in 10 classes, with 6,000 images

per class. There are 50,000 training images and 10,000 test images. The SVHN dataset

is obtained from house numbers in Google Street View images. It consists of more than

600,000 32x32 color images in 10 classes. While similar in flavor to MNIST, it comes from

a significantly more diverse distribution. We used the 73,257 digits provided for training

and the 26,032 digits for testing.

12
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4.2 Implementation details

For both CIFAR-10 and SVHN we used a pretrained Resnet34 as a base model. To train the

EXAID detector we extract positive explanation, wrong negative and other-class negative

from natural images as described in algorithm 1. The EXAID-unknown model was trained

on those explanations. To train EXAID-familiar we extracted adversarial negative using a

FGSM attack with a noise level of ε = 0.1.

Algorithm 1 Create positive and negative explanation, and train bad explanation detector

for each class
1: Input: F - Trained model, (X, Y ) - Dataset of labeled samples

2: Initialize: positives← array of empty sets, negatives← array of empty sets

3: for (x, y) ∈ (X, Y ) do

4: ŷ = F (x)

5: explanation = SHAP (F, x)

6: if ŷ == y then

7: positives[ŷ].append(explanation[ŷ])

8: for i = 1..ŷ − 1, ŷ + 1..n do

9: negatives[i].append(explanation[i]) ; // Collect other-class

negative

10: end for

11: else

12: negatives[ŷ].append(explanation[ŷ]) ; // Collect wrong negatives

13: end if

14: end for

15: for i = 1..n do

16: Ci ←− Train(positives[i],negatives[i]) ; // Train i-th class classifier

17: end for

As described, we used SHAP as an explainability model [Lundberg and Lee, 2017b].

The original implementation of SHAP runs on CPU and is therefore suitable for use only

on a small number of samples, rather than on entire datasets. To enable us to run SHAP on

a large number of examples we modified the original implementation to run on GPU. The

13



new version is available in our Git repository.

4.3 Defense Baselines

We compared EXAID with three recently-published adversarial detection baselines, and two

new variants of these baselines.

(1) ANR [Liang et al., 2018]. A method based on measuring the effect of quantization and

smoothing of the image on the network classification, both are parameterized as a function

of the image entropy. We used the implementation provided by the authors. Since ANR

was not tested in the original paper on CIFAR-10 and SVHN as done here, we tuned the

hyperparameters of their method using hyperopt [Bergstra et al., 2013].

(2) Mahalanobis [Lee et al., 2018]. This approach models the distribution of activations in

the hidden layers of the classifier, as obtained in response to natural (unperturbed) samples,

using a Gaussian mixture model. Given a set of likelihood scores from the GMM, a classifier

is trained to determine if a set of activations is obtained in response to an adversarial

example or a natural one. That classifier is trained on adversarial examples. We used the

implementation provided by the authors, and as the original paper, we trained the classifier

with adversarial examples crafted by FGSM.

(3) Mahalanobis Unsupervised. We modified the method of [Lee et al., 2018] to reach an

attack-agnostic baseline as follows. Instead of training an attack-dependent discriminator

on adversarial samples, we estimated the likelihood of a set of network activations as the

product of likelihoods of all layers.

(4) LID [Ma et al., 2018]. LID measures the characteristics of the region surrounding

a reference example, and give it a likelihood score. This is done separately for each

representation of the example, in the classifier’s hidden layers. As in Mahalanobis, a

classifier is trained to determine if a set of activations is obtained in response to an adversarial

example or a natural one. We used the implementation from [Lee et al., 2018], and trained

the classifier with adversarial examples crafted by FGSM.

(5) Unsupervised LID. As for Mahalnobis, we test an unsupervised version of LID, based

on the product of likelihoods of individual layers, without training a classifier.
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4.4 Experimental Setup

We test the detection models against oblivious adversaries, an attack scenario in which an

attacker has full knowledge about the model (white box attack), but is not aware of the

existence of the defense model. We believe this is a relevant scenario since, in the real world,

most attackers will not have direct access to the attacked model and its defense. In this

case, the attacker will be forced to use a black box attack. However, as [Papernot et al.,

2017] showed, adversarial examples are transferable between models. Given transferability,

attacking a black box model is not marginally harder than a white box. Because of that, we

baseline our model against a white box attack as which is a more challenging task.

This is not the case when the model is defended, since [Li et al., 2019] shows that the

transferability of adversarial examples works well between vanilla neural networks, but fail

to transfer between defended neural networks.

We believe that the magnitude of perturbation used by an attack is a major factor that

determines the success of adversarial detection methods. There is still no clear protocol in

the literature about comparing attacks and detections depending on this factor, and different

reported experiments use different values. We, therefore, repeated all experiments for a wide

range of noise levels and report performance across that wide range.

4.5 Attacks

We used three attack methods to test EXAID: (1) One step gradient attack (FGSM) [Good-

fellow et al., 2014], (2) Iterative projected gradient (PGD) [Madry et al., 2017] and the

Carlini and Wagner attack, which uses optimization to add as small as possible perturbation

(C&W) [Carlini and Wagner, 2017b]. All attacks were implemented using Advertorch [Ding

et al., 2019]. Opposed to other defense methods benchmarks, we examined the effect of

noise-level on a range of three orders of magnitude.

4.6 Results

The results for all detection methods are shown in figure 4.1. EXAID significantly outper-

forms the other methods when the noise level is small (small perturbations), and with attack
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methods that use adaptive noise levels (C&W). Typically, the AUC is increased from 70%

to over 90%.

LID and Mahalanobis both perform well in high noise scenarios, and slightly outperform

EXAID on SVHN in these scenarios. However, when the noise level decreases LID and

Mahalanobis performance suffers drastically, while EXAID’s remains high. Interestingly,

our unsupervised variant of LID, performs at least as well, and sometimes better, than the

original LID. This may be because LID was trained with FGSM samples and may deteriorate

in cross-attack scenarios. These findings show the importance of benchmarking defense

models against a wide range of noise levels.
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(a) CIFAR-10 FGSM (b) SVHN FGSM

(c) CIFAR-10 PGD (d) SVHN PGD

(e) CIFAR-10 C&W (f) SVHN C&W

Figure 4.1: Defense methods comparison. Each sub-figure compares 2 EXAID variants to

five baselines. (a,b) defend against FGSM, for CIFAR-10 and SVHN. (c,d) same against

PGD (d,e) Same against C&W. EXAID outperforms all baselines in low-noise scenarios,

and is comparable in the high-noise regime.
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Chapter 5

Detecting out-of-distribution samples

While the main purpose of this work was to detect adversarial examples, it also has im-

plications in detecting abnormal samples that are drawn far away from the distribution of

training samples. In a sense, all the statistical methods for adversarial detection assume

adversarial examples don’t come from the same distribution as natural examples. Detecting

out-of-distribution samples is an important task, as it was shown neural networks don’t

generalize well across different distributions Liang et al. [2017]. However, when deploying

a neural network in real-world applications, there is little control over the input data’s distri-

bution. Recent works have also shown that neural networks tend to make high confidence

predictions even for completely irrelevant inputs [Liang et al., 2017]. Therefore, being able

to accurately detect out-of-distribution examples can be practically important.

EXAID uses a negative explanation detector to find adversarial examples. We tested its

ability to detect out-of-distribution examples, under the assumption that the explanations

of those out-of-distribution examples are in the distribution of the detector. We have also

assumed the same for adversarial examples, but for out-of-distribution cases, it is a stronger

assumption: Even if we look on adversarial examples as out-of-distribution ones, they are

crafted in a way that lets them stay very close to the original distribution. In contrast, in the

out-of-distribution task, a detector should detect out-of-distribution examples even when

they are far away from the distribution of training samples.

For this experiment, we used the same detector from chapter 3, with no additional tuning

for the new task. As in Liang et al. [2017] and Lee et al. [2018] we check the ability of

the detector to detect examples from another dataset as out-of-distribution. In order to do
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that, we take a pretrained model on CIFAR-10, and ran it on examples from SVHN. We

used SHAP to explain the predicted class, and used both versions of EXAID detector from

chapter 3 to classify the explanation as positive or negative. This time, a negative explained

example will be declared as an out-of-distribution (and not adversarial) example. We also

repeated the experiment in the opposite direction. The results are in figure 5.1.

According to Lee et al. [2018] state of the art out-of-distribution detectors like Liang

et al. [2017] gets an AUC score of 0.96 for detecting SVHN examples from CIFAR-10

distribution, and an AUC score of 0.91 for detecting CIFAR-10 examples from SVHN

distribution. Although our AUC scores of 0.86 and 0.81 respectively, are not as good as the

state of the art, we believe they may help to improve other out-of-distribution methods, due

to the fact that our method uses different properties of the example.

(a) CIFAR-10 (b) SVHN

Figure 5.1: EXAID use for out-of-distribution task. ROC curve for both EXAID versions

from chapter 3 at out-of-distribution detection. (a) SVHN examples detection from CIFAR-

10 distribution. (b) CIFAR-10 examples detection from SVHN distribution.
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Chapter 6

Conclusion

In this work, we proposed EXAID, a novel attack-detection approach, which uses model

explainability to identify images whose explanations are inconsistent with the predicted

class. Our method outperforms previous state-of-the-art methods, for three attack methods,

and many noise-levels. We demonstrated that the attack noise level has a major impact on

previous defense methods. We hope this will encourage the research community to evaluate

future defense methods on a large range of noise-levels.
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 תקציר

עוצבו באופן מדויק ש משטות הן דוגמאותרגישים לדוגמאות משטות. דוגמאות מודלים של למידה עמוקה 

נו התמקדנו בזיהוי דוגמאות כאלה, ולא על מנת לגרום למערכת לבצע החלטה שגויה. בעבודה זו א

רכות חסינות לדוגמאות מסוג זה, לאור העובדה שזיהוי תקיפה פעמים רבות חשוב הרבה יצירת מעב

יותר מאשר ההימנעות מביצוע שגיאה. לשם כך השתמשנו במודלי הסבר, המציינים את התרומה של כל 

לפלט הסופי שהתקבל. האבחנה המרכזית מבוססת על כך שתוקף יתקשה לתת הסבר  ,פיקסל בקלט

 כון לא אמור לקבל תמיכה מהקלט.הסבר לא נשכן  –ווגה באופן שגוי משכנע לתמונה שס

ים את מאנו גישה חדשה לזיהוי תקיפות, שמשתמשת במודלי הסבר כדי לזהות הסברים שאינם תוא

, שיטה המקרבת את ערכי שאפלי עבור התמונה SHAP-. השתמשנו בהחיזוי שנתנה המערכת

המתקבלת בקלט כדי לזהות את התרומה של כל פיקסל להחלטה של המערכת. שיטה זו איננה דורשת 

שינוי כלשהו במודל הנתקף ויכולה להיות מיושמת ללא צורך בידע מוקדם על סוג התקיפה ממנו נדרש 

ל כך, שיטה זו יכולה לעזור בהתמודדות עם תקיפות שלא היו ידועות בזמן תכנון המודל להתגונן. בש

 בכלל ומודל ההגנה בפרט.

ואל מול שלוש שיטות תקיפה SVHN -ו  CIFAR-10 -אל מול שני בסיסי נתונים מקובלים השיטה נבחנה 

משפרת את השיטות המובילות בתחום . אנו הראנו שהשיטה המוצעת &C -ו  FGSM, PGDמובילות 

רעש שהתוקף מורשה להכניס לתמונה, כאשר עבור ערכי רעש קטנים בהפרש ניכר בטווח רחב של ערכי 

 .07%-ל 07%-יכולת הגילוי משתפרת מ
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